Neuromuscular electrical stimulation (NMES) can be used to activate paralyzed or paretic muscles to generate functional or therapeutic movements. The goal of this research was to develop a rodent model of NMES-assisted movement therapy after spinal cord injury (SCI) that will enable investigation of mechanisms of NMES-induced plasticity, from the molecular to systems level. Development of the model requires accurate mapping of electrode and muscle stimulation sites, the capability to selectively activate muscles to produce graded contractions of sufficient strength, stable anchoring of the implanted electrode within the muscles and stable performance with functional reliability over several weeks of the therapy window.
View Article and Find Full Text PDFNeuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations.
View Article and Find Full Text PDFBackground/objective: Differences in soft-tissue stiffness may provide for a quantitative assessment and detection technique for pressure ulcers or deep-tissue injury. An ultrasound indentation system may provide a relatively convenient, simple, and noninvasive method for quantitative measurement of changes in soft-tissue stiffness in vivo.
Methods: The Tissue Ultrasound Palpation System (TUPS) was used to quantitatively measure changes in soft-tissue stiffness at different anatomical locations within and between able-bodied persons and individuals with chronic spinal cord injury (SCI).