Publications by authors named "Ganapati Sahoo"

Inviscid invariants of flow equations are crucial in determining the direction of the turbulent energy cascade. In this work we investigate a variant of the three-dimensional Navier-Stokes equations that shares exactly the same ideal invariants (energy and helicity) and the same symmetries (under rotations, reflections, and scale transforms) as the original equations. It is demonstrated that the examined system displays a change in the direction of the energy cascade when varying the value of a free parameter which controls the relative weights of the triadic interactions between different helical Fourier modes.

View Article and Find Full Text PDF

We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

View Article and Find Full Text PDF

The effects of the helicity on the dynamics of turbulent flows are investigated. The aim is to disentangle the role of helicity in fixing the direction, the intensity, and the fluctuations of the energy transfer across the inertial range of scales. We introduce an external parameter α that controls the mismatch between the number of positive and negative helically polarized Fourier modes.

View Article and Find Full Text PDF

We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m).

View Article and Find Full Text PDF

We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.

View Article and Find Full Text PDF

An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to occur in the nonturbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence.

View Article and Find Full Text PDF

We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition.

View Article and Find Full Text PDF