Publications by authors named "Ganapati Panda"

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer is the second most common cancer in women, with invasive ductal breast cancer being the most lethal.
  • The study evaluates three deep learning models—Vision Transformer (ViT), Convmixer, and VGG-19—using a breast cancer histopathological image database to detect and classify tumors.
  • ViT outperformed the other models with an impressive accuracy of 99.89% for binary classification, suggesting it could improve early diagnosis and treatment of breast cancer while potentially being applicable to other diseases.
View Article and Find Full Text PDF

Thyroid cancer is a life-threatening condition that arises from the cells of the thyroid gland located in the neck's frontal region just below the adam's apple. While it is not as prevalent as other types of cancer, it ranks prominently among the commonly observed cancers affecting the endocrine system. Machine learning has emerged as a valuable medical diagnostics tool specifically for detecting thyroid abnormalities.

View Article and Find Full Text PDF

Computer-assisted diagnostic systems have been developed to aid doctors in diagnosing thyroid-related abnormalities. The aim of this research is to improve the diagnosis accuracy of thyroid abnormality detection models that can be utilized to alleviate undue pressure on healthcare professionals. In this research, we proposed deep learning, metaheuristics, and a MCDM algorithms-based framework to detect thyroid-related abnormalities from ultrasound and histopathological images.

View Article and Find Full Text PDF

Background: Thyroid disorders are prevalent worldwide and impact many people. The abnormal growth of cells in the thyroid gland region is very common and even found in healthy people. These abnormal cells can be cancerous or non-cancerous, so early detection of this disease is the only solution for minimizing the death rate or maximizing a patient's survival rate.

View Article and Find Full Text PDF

COVID-19 is a deadly viral infection that mainly affects the nasopharyngeal and oropharyngeal cavities before the lung in the human body. Early detection followed by immediate treatment can potentially reduce lung invasion and decrease fatality. Recently, several COVID-19 detections methods have been proposed using cough and breath sounds.

View Article and Find Full Text PDF

The machine learning (ML)-based classification models are widely utilized for the automated detection of heart diseases (HDs) using various physiological signals such as electrocardiogram (ECG), magnetocardiography (MCG), heart sound (HS), and impedance cardiography (ICG) signals. However, ECG-based HD identification is the most common one used by clinicians. In the current investigation, the ECG records or subjects have been sampled and are used as inputs to the classification model to distinguish between normal and abnormal patients.

View Article and Find Full Text PDF

In recent times, speech-based automatic disease detection systems have shown several promising results in biomedical and life science applications, especially in the case of respiratory diseases. It provides a quick, cost-effective, reliable, and non-invasive potential alternative detection option for COVID-19 in the ongoing pandemic scenario since the subject's voice can be remotely recorded and sent for further analysis. The existing COVID-19 detection methods including RT-PCR, and chest X-ray tests are not only costlier but also require the involvement of a trained technician.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) makes our heart and blood vessels dysfunctional and often leads to death or physical paralysis. Therefore, early and automatic detection of CVD can save many human lives. Multiple investigations have been carried out to achieve this objective, but there is still room for improvement in performance and reliability.

View Article and Find Full Text PDF

The early detection of COVID-19 is a challenging task due to its deadly spreading nature and existing fear in minds of people. Speech-based detection can be one of the safest tools for this purpose as the voice of the suspected can be easily recorded. The Mel Frequency Cepstral Coefficient (MFCC) analysis of speech signal is one of the oldest but potential analysis tools.

View Article and Find Full Text PDF

Understanding the behavioral process of life and disease-causing mechanism, knowledge regarding protein-protein interactions (PPI) is essential. In this paper, a novel hybrid approach combining deep neural network (DNN) and extreme gradient boosting classifier (XGB) is employed for predicting PPI. The hybrid classifier (DNN-XGB) uses a fusion of three sequence-based features, amino acid composition (AAC), conjoint triad composition (CT), and local descriptor (LD) as inputs.

View Article and Find Full Text PDF

Glaucoma is a progressive optic neuropathy characterized by peripheral visual field loss, which is caused by degeneration of retinal nerve fibers. The peripheral vision loss due to glaucoma is asymptomatic. If not detected and treated at an early stage, it leads to complete blindness, which is irreversible in nature.

View Article and Find Full Text PDF

Retinal nerve fiber layer defect (RNFLD) provides an early objective evidence of structural changes in glaucoma. RNFLD detection is currently carried out using imaging modalities like OCT and GDx which are expensive for routine practice. In this regard, we propose a novel automatic method for RNFLD detection and angular width quantification using cost effective redfree fundus images to be practically useful for computer-assisted glaucoma risk assessment.

View Article and Find Full Text PDF

Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges.

View Article and Find Full Text PDF

Protein-protein interactions govern almost all biological processes and the underlying functions of proteins. The interaction sites of protein depend on the 3D structure which in turn depends on the amino acid sequence. Hence, prediction of protein function from its primary sequence is an important and challenging task in bioinformatics.

View Article and Find Full Text PDF

Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identification methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed.

View Article and Find Full Text PDF

During last few decades accurate determination of protein structural class using a fast and suitable computational method has been a challenging problem in protein science. In this context a meaningful representation of a protein sample plays a key role in achieving higher prediction accuracy. In this paper based on the concept of Chou's pseudo amino acid composition (Chou, K.

View Article and Find Full Text PDF