The efficiency of UV-activated sodium percarbonate (SPC) and sodium hypochlorite (SHC) in Norfloxacin (Norf) removal from an aqueous solution was assessed. Control experiments were conducted and the synergistic effect of the UV-SHC and UV-SPC processes were 0.61 and 2.
View Article and Find Full Text PDFThis study investigated the performance of combined zero-valent aluminum (ZVAl) and electrochemically activated persulfate (PS) oxidation for the leachate nanofiltration concentrate (NFC) treatment. Firstly, operating parameters in the ZVAl procedure were optimized and under the optimum conditions (ZVAl dose 1 g/L, initial pH 1.5) the removal efficiency of the chemical oxygen demand (COD), UV, and color were 22.
View Article and Find Full Text PDFIn this study, the performance of ultraviolet (UV)-assisted persulfate (PS) and percarbonate (PC) oxidation processes in oxytetracycline (OTC) removal was investigated. UVC lamps were used for the photolysis process and the effect of operating parameters (initial pH, oxidant dose, initial OTC concentration, UV intensity) on OTC removal efficiency was determined. Control experiments were carried out at pH 5.
View Article and Find Full Text PDFTreatment of paint manufacturing industry wastewater by electrooxidation (EO) process in which peroxymonosulfate (PMS) and transition metals are added was investigated. In the EO/PMS process, graphite was the cathode while different anode materials (Ti/IrO, Ti/RuO and Ti/SnO) were used. The anode with the highest chemical oxygen demand (COD) and true color removal efficiency was selected.
View Article and Find Full Text PDFFurfural removal by electrochemically activated peroxydisulfate (E-PS) and peroxymonosulfate (E-PMS) was investigated. The effect of different anodes was investigated for the electrochemical activation of oxidants. Box Behnken Design was applied to determine optimum operating conditions, which were determined as follows; PS concentration: 2.
View Article and Find Full Text PDFOxytetracycline (OTC) is a broad-spectrum antibiotic that resists biodegradation and poses a risk to the ecosystem. This study investigated the degradation of OTC by heat-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) processes. Response surface methodology (RSM) was used to evaluate the effect of process parameters, namely initial pH, oxidant concentration, temperature, and reaction time on the OTC removal efficiency.
View Article and Find Full Text PDFMedical laboratory wastewaters arising from diagnosis and examination units show highly toxic characteristic. Within the scope of the study, removal of the wastewater's toxicity and increasing BOD /COD ratio of the medical laboratory wastewaters through electro-Fenton (EF) process were investigated. In the study, central composite design was applied to optimize the process parameters of EF for COD, BOD , and toxicity unit (TU) removal.
View Article and Find Full Text PDFIn this study, the treatment of paper industry wastewaters by the electrocoagulation (EC) process with a strong oxidant, persulfate addition, was investigated. Persulfate was activated by dissolution of Fe and Al from electrodes during the process. Central composite design method, being one of the response surface methods, was applied for the optimization of process parameters and the development of a mathematical model for chemical oxygen demand (COD) removal from paper industry wastewaters.
View Article and Find Full Text PDFThis study deals with chemical oxygen demand (COD), phenol and Ca removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R = 0.
View Article and Find Full Text PDFThe main aim of this study was to investigate the effect of leachate recirculation and aeration on volatile fatty acid (VFA) concentrations in aerobic and anaerobic landfill leachate samples. In this study, two aerobic (A1, A2) and two anaerobic (AN1, AN2) reactors with (A1, AN1) and without (A2, AN2) leachate recirculation were used in order to determine the change of volatile fatty acids components in landfill leachate. VFA degradation rate was almost 100% in each reactor but the degradation rate show notable differences.
View Article and Find Full Text PDFThe aim of this study was to investigate the aerobic and anaerobic degradation of phenol and its derivatives in aerobic and anaerobic landfills. Phenolic compounds were extracted from leachate samples using the solid phase micro-extraction method. In this study, analysis of the 24 phenolic compounds included in the standard mixture and the change in the concentrations over time of 23 of the 24 compounds found in the calibration mix standard were determined in both aerobic and anaerobic landfill reactors.
View Article and Find Full Text PDFOne-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.
View Article and Find Full Text PDFFour identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻⁸ m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors.
View Article and Find Full Text PDFThe main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.
View Article and Find Full Text PDF