Publications by authors named "Gamze B Bulut"

Article Synopsis
  • Thromboembolic events from advanced atherosclerosis are the main cause of death globally, and lowering lipids through diet and medication is crucial to reduce cardiovascular risks like heart attacks and strokes.
  • Researchers fed mice a high-cholesterol diet followed by a zero-cholesterol diet to study the effects of IL-1β treatment on atherosclerotic lesions, using advanced techniques for analysis.
  • While lowering lipids improved several health indicators in mice, IL-1β treatment unexpectedly worsened plaque conditions and increased lesion size, indicating a potential risk with this therapy after diet changes.
View Article and Find Full Text PDF

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages.

View Article and Find Full Text PDF

Neutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage-induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD.

View Article and Find Full Text PDF
Article Synopsis
  • Thromboembolic events from advanced atherosclerosis are a major global health issue, and aggressive lipid lowering through diet and drugs is essential to prevent cardiovascular events like heart attacks and strokes.
  • A study was conducted using mice to evaluate the impact of switching from a high-fat diet to a low-fat diet on atherosclerotic lesions, involving advanced techniques to analyze lesion characteristics and stability.
  • While switching to a low-fat diet significantly lowered LDL cholesterol and improved some aspects of plaque conditions, the addition of an IL-1β antibody treatment unexpectedly worsened the condition by increasing plaque size and cholesterol accumulation.
View Article and Find Full Text PDF

Unlabelled: Caspase 9 undergoes alternative splicing to produce two opposing isoforms: proapoptotic Caspase 9a and pro-survival Caspase 9b (C9b). Previously, our laboratory reported that C9b is expressed in majority of non-small cell lung cancer tumors and directly activates the NF-κB pathway. In this study, the role of C9b in activation of the NF-κB pathway in vivo, lung inflammation and immune responses, and lung tumorigenesis were examined.

View Article and Find Full Text PDF

Aims: Until recently, the pluripotency factor Octamer (ATGCAAAT)-binding transcriptional factor 4 (OCT4) was believed to be dispensable in adult somatic cells. However, our recent studies provided clear evidence that OCT4 has a critical atheroprotective role in smooth muscle cells. Here, we asked if OCT4 might play a functional role in regulating endothelial cell (EC) phenotypic modulations in atherosclerosis.

View Article and Find Full Text PDF

Mitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms.

View Article and Find Full Text PDF

Objective: Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to -dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP cells expressing macrophage markers.

View Article and Find Full Text PDF

Alternate RNA processing of caspase-9 generates the splice variants caspase 9a (C9a) and caspase 9b (C9b). C9b lacks a domain present in C9a, revealing a tumorigenic function that drives the phenotype of non-small cell lung cancer (NSCLC) cells. In this study, we elucidated the mechanistic underpinnings of the malignant character of this splice isoform.

View Article and Find Full Text PDF

Nitrogen permease regulator-like 2 (NPRL2) is a component of a conserved complex that inhibits mTORC1 (mammalian Target Of Rapamycin Complex 1) in response to amino acid insufficiency. Here, we show that NPRL2 is required for mouse viability and that its absence significantly compromises fetal liver hematopoiesis in developing embryos. Moreover, NPRL2 KO embryos have significantly reduced methionine levels and exhibit phenotypes reminiscent of cobalamin (vitamin B12) deficiency.

View Article and Find Full Text PDF

A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells.

View Article and Find Full Text PDF

Erythropoietin (Epo) binding to the Epo receptor (EpoR) elicits downstream signaling that is essential for red blood cell production. One important negative regulatory mechanism to terminate Epo signaling is Epo-induced EpoR endocytosis and degradation. Defects in this mechanism play a key role in the overproduction of erythrocytes in primary familial and congenital polycythemia (PFCP).

View Article and Find Full Text PDF

Ubiquitination is a common mechanism of down-regulation of mitogenic receptors. Here, we show that ubiquitination of the erythropoietin receptor (EpoR) at Lys(256) is necessary and sufficient for efficient Epo-induced receptor internalization, whereas ubiquitination at Lys(428) promotes trafficking of activated receptors to the lysosomes for degradation. Interestingly, EpoR that cannot be ubiquitinated has reduced mitogenic activities and ability to stimulate the STAT5, Ras/MAPK, and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

Primary familial and congenital polycythemia (PFCP) is an autosomal-dominant proliferative disorder characterized by erythrocytosis and hypersensitivity of erythroid progenitors to erythropoietin (Epo). Several lines of evidence suggest a causal role of truncated erythropoietin receptor (EpoR) in this disease. In this review, we discuss PFCP in the context of erythrocytosis and EpoR signalling.

View Article and Find Full Text PDF