Publications by authors named "Gamsjaeger S"

Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment.

View Article and Find Full Text PDF

Increased fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD) by DXA. Advanced glycation end-products (AGEs) have been implicated in the increased fracture risk in T1D, yet recent publications question this. To test the hypothesis that enzymatic collagen cross-links rather than AGEs correlate with fracture incidence in T1D, we analyzed iliac crest biopsies from sex-matched, fracturing T1D patients (N = 5; T1DFx), 6 non-fracturing T1D patients (T1DNoFx), and 6 healthy subjects, by Raman microspectroscopy as a function of tissue age (based on double fluorescent labels), in intracortical and trabecular bone, to determine pyridinoline (Pyd), ε-N-Carboxymethyl-L-lysine, and pentosidine (PEN)).

View Article and Find Full Text PDF

The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse.

View Article and Find Full Text PDF

The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g.

View Article and Find Full Text PDF

Bone material / compositional properties are significant determinants of bone quality, thus strength. Raman spectroscopic analysis provides information on the quantity and quality of all three bone tissue components (mineral, organic matrix, and tissue water). The overwhelming majority of the published reports on the subject concern adults.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) therapies are frequently evaluated by bone mineral density (BMD) gains against patients receiving placebo (calcium and vitamin D supplementation, a mild bone turnover-suppressing intervention), which is not equivalent to either healthy or treatment-naive PMOP. The aim of the present observational study was to assess the effects of TPTD treatment in PMOP (20 μg, once daily) at 6 (TPTD 6m; n = 28, age 65 ± 7.3 years), and 24 (TPTD 24m; n = 32, age 67.

View Article and Find Full Text PDF

X-linked hypophosphatemia (XLH) is characterized by excess fibroblast growth factor 23 (FGF23) secretion, renal phosphate wasting, and low 1,25(OH) D . Adult patients present with osteomalacia, hypomineralized periosteocytic lesions, bone fragility, and pain. Burosumab is a fully human monoclonal FGF23 antibody approved for XLH treatment.

View Article and Find Full Text PDF

Introduction: Osteoporosis is a frequent age-related disease, which affects millions of people worldwide. Despite significant progress in the treatment of the disease, a high number of patients still are underdiagnosed and undertreated. Therefore, novel animal models for the investigation of the disease are necessary.

View Article and Find Full Text PDF

Previous studies of ovariectomized (OVX) monkeys, treated with recombinant human parathyroid hormone (PTH) (1-34) at 1 or 5 μg/kg/day for 18 months or for 12 months followed by 6 months withdrawal from treatment, displayed significant changes in geometry, histomorphometry, and bone quality, but without strict tissue age criteria, of the midshaft humerus. Since bone quality significantly depends on tissue age among other factors, the aim of the present study was to establish the bone-turnover independent effects of two doses of PTH, as well as the effects of treatment withdrawal on bone quality by measuring bone material composition at precisely known tissue ages ranging from osteoid, to mineralized tissue older than 373 days. Raman microspectroscopic analysis of bone tissue from the mid-shaft humerus of OVX monkeys demonstrated that the clinically relevant dose of PTH administered for 18 months reverses the effects of ovariectomy on bone quality when compared against SHAM.

View Article and Find Full Text PDF

Post-menopausal osteoporosis is characterized by a negative imbalance between bone formation and bone resorption resulting in a net bone loss, increasing the risk of fracture. One of the earliest interventions to protect against this was hormonal replacement therapy (HRT). Bone strength depends on both the amount and quality of bone, the latter including compositional / material and structural properties.

View Article and Find Full Text PDF

Osteoporosis is characterized by an imbalance between bone formation and resorption rates, resulting in bone loss. For ethical reasons, effects of antiosteoporosis drugs are compared against patients receiving vitamin D and calcium supplementation which is a mild antiresorptive regimen. Bone formation may be resolved into two phases: the initial formation of mineral crystals (primary nucleation) and the subsequent mineral accumulation (secondary nucleation and mineral growth) on them.

View Article and Find Full Text PDF

The ability of bone to resist fracture is dependent on the composite nature of its mineral and organic matrix content. Teriparatide (TPTD) and zoledronic acid (ZOL) are approved anabolic and antiresorptive therapies, respectively, to reduce fracture risk in women with postmenopausal osteoporosis. In the SHOTZ study, postmenopausal women with osteoporosis were treated with TPTD (20 μg daily, subcutaneous) or ZOL (5 mg/year, intravenous infusion) for 24 months.

View Article and Find Full Text PDF

X-linked hypophosphatemia (XLH) caused by PHEX mutations results in elevated serum FGF23 levels, renal phosphate wasting and low 1,25-dihydroxyvitamin D. The glycophosphoprotein osteopontin, a potent inhibitor of mineralization normally degraded by PHEX, accumulates within the bone matrix. Conventional therapy consisting of supplementation with phosphate and vitamin D analogs is burdensome and the effects on bone material poorly characterized.

View Article and Find Full Text PDF

Bone Material Strength index (BMSi) measured by Impact Microindentation is generally lower in subjects with fragility fractures independently of BMD values. We recently reported that in humans, BMSi values are strongly associated with material properties of subperiosteal mineralized bone surface (local mineral content, nanoporosity, pyridinoline content). In the present study we investigated the relationship of BMSi with material properties of the whole bone cortex, by analyzing thin sections of iliac crest biopsies (N = 12) from patients with different skeletal disorders and a wide range of BMD with or without fractures, by Fourier transform infrared imaging (FTIRI).

View Article and Find Full Text PDF

During human skeletal growth, bone is formed via different processes. Two of them are: new bone formation by depositing bone at the periosteal (outer) surface and bone remodeling corresponding to a local renewal of tissue. Since in remodeling formation is preceded by resorption, we hypothesize that modeling and remodeling could require radically different transport paths for ionic precursors of mineralization.

View Article and Find Full Text PDF

Impact microindentation (IMI) is a Reference Point Indentation technique measuring tissue-level properties of cortical bone in humans in vivo. The nature, however, of the properties that can affect bone strength is incompletely understood. In the present study we examined bone material properties in transiliac bone biopsies obtained concurrently with measurements of Bone Material Strength index (BMSi) by IMI in 12 patients with different skeletal disorders and a wide range of BMD, with or without fractures (8 males, 4 females, mean age 48±12.

View Article and Find Full Text PDF

Ovariectomized animal models have been extensively used in osteoporosis research due to the resulting loss of bone mass. The purpose of the present study was to test the hypothesis that estrogen depletion alters mineralization regulation mechanisms in an ovariectomized monkey animal model. To achieve this we used Raman microspectroscopy to analyze humeri from monkeys that were either SHAM-operated or ovariectomized (N = 10 for each group).

View Article and Find Full Text PDF

Teriparatide increases bone mass primarily through remodeling of older or damaged bone and abundant replacement with new mineralizing bone. This post hoc analysis investigated whether dual-energy X-ray absorptiometric (DXA) areal bone mineral density (aBMD) measurement adequately reflects changes of mineral and organic matrix content in cortical and trabecular bone. Paired biopsies and aBMD measurements were obtained before and at end of 2 years of teriparatide treatment from postmenopausal women with osteoporosis who were either alendronate pretreated (mean, 57.

View Article and Find Full Text PDF

Background: Mutations of the endoplasmic reticulum (ER)-stress transducer OASIS (encoded by CREB3L1), cause severe recessive osteogenesis imperfecta (OI) not compatible with surviving the neonatal period, as has been shown in two unrelated families through a whole gene deletion vs. a qualitative alteration of OASIS. Heterozygous carriers in the described families have exhibited a mild phenotype.

View Article and Find Full Text PDF

Mutations in the PLS3 gene, encoding Plastin 3, were described in 2013 as a cause for X-linked primary bone fragility in children. The specific role of PLS3 in bone metabolism remains inadequately understood. Here we describe for the first time PLS3 deletions as the underlying cause for childhood-onset primary osteoporosis in 3 boys from 2 families.

View Article and Find Full Text PDF

Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue.

View Article and Find Full Text PDF

Long-term antiresorptives use has been linked to atypical subtrochanteric and diaphyseal femoral fractures (AFF), the pathogenesis of which is still unknown. In the present case report we present the results of analysis of bone chips from a 74-year old female patient that had been on alendronate, ibandronate and denosumab treatment, and who sustained an atypical femoral fracture, by histology, quantitative backscattered electron imaging, and Raman spectroscopic analysis. The results indicate ongoing osteoclastic resorption, but also several abnormalities: 1) an altered arrangement of osteons; 2) impaired mineralization; 3) the presence of pyrophosphate, which might contribute to the impaired mineralization evident in the present case.

View Article and Find Full Text PDF

Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux.

Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies.

Design And Setting: Natural history study in pediatric research centers.

View Article and Find Full Text PDF

Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD).

View Article and Find Full Text PDF

Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.

View Article and Find Full Text PDF