Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina.
View Article and Find Full Text PDFTo isolate melanopsin contributions to retinal sensitivity measured by the post-illumination pupil response (PIPR), controlling for individual differences in non-melanopsin contributions including retinal irradiance is required. When methodologies to negate such differences present barriers, statistical controls have included age, baseline diameter, iris pigmentation, and circadian time of testing. Alternatively, the pupil light reflex (PLR) and calculations estimating retinal irradiance both reflect retinal irradiance, while the PLR also reflects downstream pathways.
View Article and Find Full Text PDFStudy Objectives: Altered light sensitivity may be an underlying vulnerability for disrupted circadian photoentrainment. The photic information necessary for circadian photoentrainment is sent to the circadian clock from melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). The current study tested whether the responsivity of ipRGCs measured using the post-illumination pupil response (PIPR) was associated with circadian phase, sleep timing, and circadian alignment, and if these relationships varied by season or depression severity.
View Article and Find Full Text PDFBackground: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans.
Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix.
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients.
View Article and Find Full Text PDFPhotoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs).
View Article and Find Full Text PDFLight regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina.
View Article and Find Full Text PDFThe cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells.
View Article and Find Full Text PDFFrom mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2022
Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance.
Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport.
Age-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes.
View Article and Find Full Text PDFNon-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques.
View Article and Find Full Text PDFA retinal subsensitivity to environmental light may trigger Seasonal Affective Disorder (SAD) under low wintertime light conditions. The main aim of this study was to assess the responses of melanopsin-containing retinal ganglion cells in participants (N= 65) diagnosed with unipolar SAD compared to controls with no history of depression. Participants attended a summer visit, a winter visit, or both.
View Article and Find Full Text PDFSince most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
July 2020
Purpose: In frontal-eyed mammals such as primates, eye movements are coordinated so that the lines of sight are directed at targets in a manner that adjusts for target distance. The lens of each eye must also be adjusted with respect to target distance to maintain precise focus. Whether the systems for controlling eye movements are monocularly or binocularly organized is currently a point of contention.
View Article and Find Full Text PDFGlobal gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord.
View Article and Find Full Text PDFThe number of research groups studying the pupil is increasing, as is the number of publications. Consequently, new standards in pupillography are needed to formalize the methodology including recording conditions, stimulus characteristics, as well as suitable parameters of evaluation. Since the description of intrinsically photosensitive retinal ganglion cells (ipRGCs) there has been an increased interest and broader application of pupillography in ophthalmology as well as other fields including psychology and chronobiology.
View Article and Find Full Text PDFTo view a nearby target, the three components of the near response are brought into play: ) the eyes are converged through contraction of the medial rectus muscles to direct both foveae at the target, ) the ciliary muscle contracts to allow the lens to thicken, increasing its refractive power to focus the near target on the retina, and ) the pupil constricts to increase depth of field. In this study, we utilized retrograde transsynaptic transport of the N2c strain of rabies virus injected into the ciliary body of one eye of macaque monkeys to identify premotor neurons that control lens accommodation. We previously used this approach to label a premotor population located in the supraoculomotor area.
View Article and Find Full Text PDFAdeno-associated virus (AAV) has emerged as the vector of choice for delivering genes to the retina. Indeed, the first gene therapy to receive FDA approval in the United States is an AAV-based treatment for the inherited retinal disease, Leber congenital amaurosis-2. Voretigene neparvovec (Luxturna™) is delivered to patients via subretinal (SR) injection, an invasive surgical procedure that requires detachment of photoreceptors (PRs) from the retinal pigment epithelium (RPE).
View Article and Find Full Text PDFIntrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys. An immunotoxin for the macaque melanopsin gene (), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.
View Article and Find Full Text PDFMutations in , the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2018
Purpose: These experiments were designed to reveal the location of the premotor neurons that have previously been designated physiologically as the midbrain near response cells controlling vergence, lens accommodation, and pupillary constriction in response to target distance.
Methods: To identify this population, the fixed N2c strain of rabies virus was injected into the ciliary body of seven Macaca fascicularis monkeys. The virus was trans-synaptically transported to the brain.
In a recent study, Ebitz and Moore described how subthreshold electrical microstimulation of the macaque frontal eye fields (FEF) modulates the pupillary light reflex. This elegant study suggests that the influence of the FEF and prefrontal cortex on attentional modulation of cortical visual processing extends to the subcortical circuit that mediates a very basic reflex, the pupillary light reflex.
View Article and Find Full Text PDF