Clin Cancer Res
May 2024
As an alternative to traditional remote controller, research on vision-based hand gesture recognition is being actively conducted in the field of interaction between human and unmanned aerial vehicle (UAV). However, vision-based gesture system has a challenging problem in recognizing the motion of dynamic gesture because it is difficult to estimate the pose of multi-dimensional hand gestures in 2D images. This leads to complex algorithms, including tracking in addition to detection, to recognize dynamic gestures, but they are not suitable for human-UAV interaction (HUI) systems that require safe design with high real-time performance.
View Article and Find Full Text PDFSensors (Basel)
December 2021
Light Detection and Ranging (LiDAR) is a sensor that uses a laser to represent the surrounding environment in three-dimensional information. Thanks to the development of LiDAR, LiDAR-based applications are being actively used in autonomous vehicles. In order to effectively use the information coming from LiDAR, extrinsic calibration which finds the translation and the rotation relationship between LiDAR coordinate and vehicle coordinate is essential.
View Article and Find Full Text PDFBackground: Reinvigoration of T-cell exhaustion with antibodies has shown promising efficacy in patients with non-small-cell lung cancer (NSCLC). However, the characteristics of T-cell exhaustion with regard to tumor-infiltrating lymphocytes (TILs) are poorly elucidated in NSCLC. Here, we investigated the exhaustion status of TILs in NSCLC patients at the intraindividual and interindividual levels.
View Article and Find Full Text PDFPatients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations exhibit an unfavorable response to PD-1 inhibitor through unclear mechanisms. Hypothesizing that EGFR mutations alter tumor-immune interactions, we compare tumor-infiltrating lymphocytes between EGFR mutant (EGFR-MT) and wild type (EGFR-WT) tumors through single-cell transcriptomic analysis. We find that B cells, CXCL13-producing follicular helper CD4 T (T)-like cells, and tissue-resident memory CD8 T (T)-like cells decreased in EGFR-MT tumors.
View Article and Find Full Text PDFRegulatory T cells (Treg) are enriched in the tumor microenvironment (TME) and suppress antitumor immunity; however, the molecular mechanism underlying the accumulation of Tregs in the TME is poorly understood. In various tumor models, tumor-infiltrating Tregs were highly enriched in the TME and had significantly higher expression of immune checkpoint molecules. To characterize tumor-infiltrating Tregs, we performed bulk RNA sequencing (RNA-seq) and found that proliferation-related genes, immune suppression-related genes, and cytokine/chemokine receptor genes were upregulated in tumor-infiltrating Tregs compared with tumor-infiltrating CD4Foxp3 conventional T cells or splenic Tregs from the same tumor-bearing mice.
View Article and Find Full Text PDFInhibition of immune checkpoint proteins like programmed death 1 (PD-1) is a promising therapeutic approach for several cancers, including non-small cell lung cancer (NSCLC). Although PD-1 ligand (PD-L1) expression is used to predict anti-PD-1 therapy responses in NSCLC, its accuracy is relatively less. Therefore, we sought to identify a more accurate predictive blood biomarker for evaluating anti-PD-1 response.
View Article and Find Full Text PDFBackground: T cells exhibit heterogeneous functional states in the tumor microenvironment. Immune checkpoint inhibitors (ICIs) can reinvigorate only the stem cell-like progenitor exhausted T cells, which suggests that inhibiting the exhaustion progress will improve the efficacy of immunotherapy. Thus, regulatory factors promoting T cell exhaustion could serve as potential targets for delaying the process and improving ICI efficacy.
View Article and Find Full Text PDFBackground: Regulatory T (T) cells have an immunosuppressive function in cancer, but the underlying mechanism of immunosuppression in the tumor microenvironment (TME) is unclear.
Methods: We compared the phenotypes of T cell subsets, including T cells, obtained from peripheral blood, malignant effusion, and tumors of 103 cancer patients. Our primary focus was on the expression of immune checkpoint (IC)-molecules, such as programmed death (PD)-1, T-cell immunoglobulin and mucin-domain containing (TIM)-3, T cell Ig and ITIM domain (TIGIT), and cytotoxic T lymphocyte antigen (CTLA)-4, on T cells in paired lymphocytes from blood, peritumoral tissue, and tumors of 12 patients with lung cancer.
Cancer cell secretomes are considered a potential source for the discovery of cancer markers. In this study, the secretomes of four breast cancer (BC) cell lines (Hs578T, MCF-7, MDA-MB-231, and SK-BR-3) were profiled with liquid chromatography-tandem mass spectrometry analysis. A total of 1410 proteins were identified with less than 1% false discovery rate, of which approximately 55% (796 proteins) were predicted to be secreted from cells.
View Article and Find Full Text PDFMass spectrometric (MS) data of human cell secretomes are usually run through the conventional human database for identification. However, the search may result in false identifications due to contamination of the secretome with fetal bovine serum (FBS) proteins. To overcome this challenge, here we provide a composite protein database including human as well as 199 FBS protein sequences for MS data search of human cell secretomes.
View Article and Find Full Text PDFTo discover serological colorectal cancer (CRC) markers, we analyzed cell line secretome to gather proteins of higher potential to be secreted from tissues into circulation. A total of 898 human proteins were identified, of which 62.2% were predicted to be released or shed from cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2012
High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells.
View Article and Find Full Text PDF