Publications by authors named "Gama P Bandawe"

The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition.

View Article and Find Full Text PDF

To investigate whether distinct populations have differing human immunodeficiency virus type 1 (HIV) neutralizing antibody responses, we compared 20 women from Tanzania's HIV Superinfection Study (HISIS) cohort, who were infected multiple HIV subtypes, and 22 women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) cohort, who were infected exclusively with HIV subtype C. By 2 years after infection, 35% of HISIS subjects developed neutralization breadth, compared with 9% of CAPRISA subjects (P = .0131).

View Article and Find Full Text PDF

Objective: Early studies in Cape Town identified independent HIV-1 epidemics, with distinct viral subtypes, among men who have sex with men (MSM) and the heterosexual population. However, few recent HIV-1 subtype data are available for MSM in South Africa. We examined HIV-1 subtypes among MSM in Cape Town.

View Article and Find Full Text PDF

Background: The high diversity of HIV variants driving the global AIDS epidemic has caused many to doubt whether an effective vaccine against the virus is possible. However, by identifying the selective forces that are driving the ongoing diversification of HIV and characterising their genetic consequences, it may be possible to design vaccines that pre-empt some of the virus' more common evasion tactics. One component of such vaccines might be the envelope protein, gp41.

View Article and Find Full Text PDF