Publications by authors named "Galyamina A"

We experimentally demonstrated that chronic social stress during the development of a depression-like state enhances lung metastasis and modifies the expression of many carcinogenesis- and apoptosis-related genes in the hypothalamus of mice, including genes involved in lung cancer pathogenesis in humans. Analysis of the expression of genes encoding the major clinical markers of lung cancer in the hypothalamus of mice with depression-like behavior revealed increased expression of the Eno2 gene encoding neuron-specific enolase, a blood marker of lung cancer progression in humans. It was shown that the expression of this gene in the hypothalamus correlated with the expression of many carcinogenesis- and apoptosis-related genes.

View Article and Find Full Text PDF

The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study.

View Article and Find Full Text PDF

Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling.

View Article and Find Full Text PDF

The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases.

View Article and Find Full Text PDF

The main neurotransmitters in the brain-dopamine, γ-aminobutyric acid (GABA), glutamate, and opioids-are recognized to be the most important for the regulation of aggression and addiction. The aim of this work was to study differentially expressed genes (DEGs) in the main reward-related brain regions, including the ventral tegmental area (VTA), dorsal striatum (STR), ventral striatum (nucleus accumbens, NAcc), prefrontal cortex (PFC), and midbrain raphe nuclei (MRNs), in male mice with 20-day positive fighting experience in daily agonistic interactions. Expression of opioidergic, catecholaminergic, glutamatergic, and GABAergic genes was analyzed to confirm or refute the influence of repeated positive fighting experience on the development of "addiction-like" signs shown in our previous studies.

View Article and Find Full Text PDF

Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used.

View Article and Find Full Text PDF

Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years.

View Article and Find Full Text PDF

Midbrain raphe nuclei (MRNs) contain a large number of serotonergic neurons associated with the regulation of numerous types of psychoemotional states and physiological processes. The aim of this work was to study alterations of the MRN transcriptome in mice with prolonged positive or negative fighting experience and to identify key gene networks associated with the regulation of serotonergic system functioning. Numerous genes underwent alterations of transcription in the MRNs of male mice that either manifested aggression or experienced social defeat in daily agonistic interactions.

View Article and Find Full Text PDF

There is experimental evidence that chronic social defeat stress is accompanied by the development of an anxiety, development of a depression-like state, and downregulation of serotonergic genes in midbrain raphe nuclei of male mice. Our study was aimed at investigating the effects of chronic lithium chloride (LiCl) administration on anxiety behavior and the expression of serotonergic genes in midbrain raphe nuclei of the affected mice. A pronounced anxiety-like state in male mice was induced by chronic social defeat stress in daily agonistic interactions.

View Article and Find Full Text PDF

A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions.

View Article and Find Full Text PDF

Daily agonistic interactions of mice are an effective experimental approach to elucidate the molecular mechanisms underlying the excitation of the brain neurons and the formation of alternative social behavior patterns. An RNA-Seq analysis was used to compare the ventral tegmental area (VTA) transcriptome profiles for three groups of male C57BL/6J mice: winners, a group of chronically winning mice, losers, a group of chronically defeated mice, and controls. The data obtained show that both winners and defeated mice experience stress, which however, has a more drastic effect on defeated animals causing more significant changes in the levels of gene transcription.

View Article and Find Full Text PDF

Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined.

View Article and Find Full Text PDF

Background: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs.

View Article and Find Full Text PDF

Chronic agonistic interactions promote the development of experimental psychopathologies in animals: a depression-like state in chronically defeated mice and the pathology of aggressive behavior in the mice with repeated wins. The abundant research data indicate that such psychopathological states are associated with significant molecular and cellular changes in the brain. This paper aims to study the influence of a 20-day period of agonistic interactions on the expression patterns of collagen family genes encoding the proteins which are basic components of extracellular matrix (ECM) in different brain regions of mice using the RNA-Seq database.

View Article and Find Full Text PDF

Background: Development of anxiety- and depression-like states under chronic social defeat stress in mice has been shown by many experimental studies. In this article, the differentially expressed Slc25* family genes encoding mitochondrial carrier proteins were analyzed in the brain of depressive (defeated) mice versus aggressive mice winning in everyday social confrontations. The collected samples of brain regions were sequenced at JSC Genoanalytica ( http://genoanalytica.

View Article and Find Full Text PDF

In course of daily agonistic interactions, mice tend to stratify into those with chronic social defeats and those that repeatedly display aggression, which lead to the development of mixed anxiety/depression-like state and the pathology of aggressive behavior, respectively. Using the data of whole transcriptome analysis (RNA-seq), the changes in the expression of serotonergic genes involved in the synthesis, inactivation, and reception of serotonin, as well as of the Creb1 (transcription factor) gene and the Bdnf (brain-derived neurotrophic factor) gene were detected in the striatum (STR), ventral tegmental area (VTA), midbrain raphe nuclei (MRN), hypothalamus (HYP), and hippocampus (HIP) of defeated and aggressive male mice. In mice of both groups, the Tph2, Ddc, Slc6a4, Htr2a, Htr3a, Htr5b, Slc18a2, and Bdnf genes were downregulated in the MRN and the Tph2, Ddc, and Slc6a4 genes were upregulated in the VTA.

View Article and Find Full Text PDF

Chronic social defeat stress (CSDS) leads to the development of mixed anxiety/depression-like state in male mice similar to those in humans. It has been shown that, under CSDS, the adult brain undergoes changes in the functioning neurotransmitter systems in different brain regions. In this experiment we are focused on the analysis of expression of genes encoding proteins related with the metabolism and receptors of serotonin, catecholamines, GABA and glutamate in the ventral teg- mental area which is important for regulation of motivations, emotions and is involved into mech- anisms of affective disorders.

View Article and Find Full Text PDF

Repeated positive fighting experience in daily agonistic interactions is accompanied by changes of brain neurotransmitter activity and genes' expression in male mice. This paper is focused on the analysis of ribosomal genes expression data as revealed by whole-transcriptome analysis (RNA-Seq) in five brain regions of male mice with long repeated experience of aggression accompanied by wins (winners). Downregulation of most Rps, Rpl, Mrps, and Mrpl genes was found in the midbrain raphe nuclei and striatum and upregulation-in the hippocampus and hypothalamus of the winners.

View Article and Find Full Text PDF

Whole-transcriptome analysis (RNA-seq) has been used to analyze changes in the expression of dopaminergic genes that encode proteins involved in the synthesis, inactivation, and neurotransmission of dopamine in the striatum, ventral tegmental area, raphe nuclei of the midbrain, hypothalamus, and hippocampus of male mice subjected to chronic social defeat. The expression of Th, Ddc, and Slc6A3 (Dat1) was upregulated, while that of Ppp1r1b and Sncg was downregulated in the ventral tegmental area; the expression of Th, Ddc, Drd2, and Sncg was downregulated in the raphe nuclei of midbrain; the expression of Th, Aldh2, and Ppp1r1b was upregulated, while that of Маоа was downregulated in the hypothalamus; Drd1 and Snca expression was downregulated and that of Sncb was upregulated in the striatum, and Sncb expression was upregulated in the hippocampus. There were no statistically significant changes in the expression of Comt, Maob, Drd3, Drd4, or Drd5 in the brain areas analyzed in stressed male mice (compared to control animals).

View Article and Find Full Text PDF

Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress.

View Article and Find Full Text PDF

Individuals exposed to social stress in childhood are more predisposed to developing psychoemotional disorders in adulthood. Here we use an animal model to determine the influence of hostile social environment in adolescence on behavior during adult life. One-month-old adolescent male mice were placed for 2 weeks in a common cage with an adult aggressive male.

View Article and Find Full Text PDF