Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment.
View Article and Find Full Text PDFThis study is based on an investigation of the transport phenomenon, specifically the quantification of arsenic diffusion in carrots within a temperature range of 89 °C-99 °C using a thin plate model. Studying the diffusion of arsenic in carrots is important due to its toxicity, as it can concentrate during cooking. The World Health Organization considers arsenic as one of the ten chemical substances of public health concern.
View Article and Find Full Text PDFBackground: The basophil activation test (BAT) has high accuracy to diagnose peanut allergy and can reduce the need for oral food challenges (OFC); however, so far it has not been incorporated in clinical practice.
Methods: We assessed the reproducibility of BAT within the same laboratory and between two different laboratories and the feasibility of using BAT in the clinical setting.
Results: One hundred and two children being assessed for peanut allergy were tested on BAT (72 allergic, 30 sensitized tolerant).
This work describes a simple agent model for the spread of an epidemic outburst, with special emphasis on mobility and geographical considerations, which we characterize via statistical mechanics and numerical simulations. As the mobility is decreased, a percolation phase transition is found separating a free-propagation phase in which the outburst spreads without finding spatial barriers and a localized phase in which the outburst dies off. Interestingly, the number of infected agents is subject to maximal fluctuations at the transition point, building upon the unpredictability of the evolution of an epidemic outburst.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2020
Langmuir monolayers are monomolecular deep films composed of amphiphilic molecules which are typically confined to a water/air interface in a bi-dimensional structure. Due to the important applications in many research areas, they have been studied for many years. Their phase diagrams present several condensed phases, showing untilted or tilted structures at low values of surface pressure.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2019
Langmuir monolayers are monomolecular wide films composed of amphiphilic molecules with a bi-dimensional structure typically formed at the air-water interface. They have been studied for many years because these monolayers have important applications in many research fields. Their phase diagrams present several condensed phases whose atomic structure is not yet completely known.
View Article and Find Full Text PDFThe composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented.
View Article and Find Full Text PDFA theoretical model of hydrogenated amorphous carbon (HAC) is developed and applied to study the interaction of glycine with HAC surfaces at astronomical temperatures. Two models with different H content are tried for the HAC surface. The theory is applied at the Density Functional Theory (DFT) level, including a semiempirical dispersion correlation potential, d-DFT or Grimme DFT-D2.
View Article and Find Full Text PDFThe symmetric stretching vibration (breathing mode) of methane is forbidden in the infrared spectra of gases. However, it has been observed in the spectra of low-pressure ice mixtures of methane and water, studied as models for astronomical ices. We investigate the possible origin of the activation of this mode by means of solid state calculations of amorphous water (ASW) samples into which methane molecules are introduced.
View Article and Find Full Text PDFNurses, the main caregivers to administer medications, often find themselves lacking the information which is nevertheless essential for the preparation of injectable antibiotics. This problem, frequent in hospitals, impacts on patient safety. On the initiative of the pharmacy and nursing staff, a tool has been created in the Percy Army Teaching Hospital in Clamart.
View Article and Find Full Text PDFCarbon dioxide and ammonia are two of the most abundant species in astrophysical media, where they can react in the solid phase under certain conditions. This contribution presents a study of this reaction both in the presence of water and for anhydrous samples. It is shown that after deposition at 15 K, the reaction can start by warming the deposit, and the process continues on up to a temperature of 220 K.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2013
Biotic and abiotic emissions of molecular iodine and iodocarbons from the sea or the ice surface and the intertidal zone to the coastal/polar marine boundary layer lead to the formation of iodine oxides, which subsequently nucleate forming iodine oxide particles (IOPs). Although the link between coastal iodine emissions and ultrafine aerosol bursts is well established, the details of the nucleation mechanism have not yet been elucidated. In this paper, results of a theoretical study of a range of potentially relevant aggregation reactions of different iodine oxides, as well as complexation with water molecules, are reported.
View Article and Find Full Text PDFThe formation of atmospherically relevant iodine oxides IxOy (x = 1,…,3, y = 1,…,7) has been studied experimentally using time-of-flight mass spectrometry combined with a soft ionisation source, complemented with ab initio electronic structure calculations of ionisation potentials and bond energies at a high level of theory presented in detail in the accompanying paper (Galvez et al., 2013). For the first time, direct experimental evidence of the I2Oy (y = 1,…,5) molecules in the gas phase has been obtained.
View Article and Find Full Text PDFObjective: The authors conducted for the first time a medication error review (REMED) following a medication error occurred in an intensive care unit. The aim of this study was to assess this first REMED.
Study Design: Descriptive study.
Cyanate and bicarbonate are two ions that play active roles in many fields of physics and chemistry, including biological sciences and astrochemistry. We present here a comprehensive study of these species covering a range of phases and methodologies. We have performed theoretical calculations on the isolated ions and their hydrates with one to four water molecules, and in clusters with 15 water molecules.
View Article and Find Full Text PDFThe administration of medicines, the last stage in the process, is mainly carried out by the nurse. She is therefore the last person to be able to intercept any quality defects in the medication which, despite the stringent safety measures taken by pharmaceutical laboratories throughout their manufacturing processes, remain unavoidable. These interceptions are vital for the patient's safety.
View Article and Find Full Text PDFPhenol rings with one or two iodine atoms bonded to ortho carbons are the essential organic source of iodine for living organisms. The salvage of this halogen fundamental for a variety of biological functions is accomplished through enzymatic processes that rely on recognition of mono- and di-iodotyrosine (MIT and DIT, respectively). Ab initio quantum calculations are used to investigate molecular properties of MIT and DIT associated with their recognition by cognate proteins.
View Article and Find Full Text PDFThe conversion from neutral to zwitterionic glycine is studied using infrared spectroscopy from the point of view of the interactions of this molecule with polar (water) and non-polar (CO(2), CH(4)) surroundings. Such environments could be found on astronomical or astrophysical matter. The samples are prepared by vapour-deposition on a cold substrate (25 K), and then heated up to sublimation temperatures of the co-deposited species.
View Article and Find Full Text PDFThe formate anion HCOO(-) is present in a multitude of systems of relevance, and it is characterized by its plasticity, adopting several different structures. This work provides a theoretical study of the ion focused on two of these structures, a crystal and an isolated species. Crystals of sodium formate and ammonium formate are studied using CASTEP, a solid-oriented computing package.
View Article and Find Full Text PDF