Publications by authors named "Galong Li"

Functional nanomaterials have emerged as versatile nanotransducers for wireless neural modulation because of their minimal invasion and high spatiotemporal resolution. The nanotransducers can convert external excitation sources (e.g.

View Article and Find Full Text PDF

Researchers have leveraged magnetic nanomaterials (MNMs) to explore neural circuits and treat neurological diseases via an approach known as MNMs-mediated neuromodulation. Here, the magneto-responsive effects of MNMs to an external magnetic field are manipulated to activate or inhibit neuronal cell activity. In this way, MNMs can serve as a nano-mediator, by converting electromagnetic energy into heat, mechanical force/torque, and an electrical field at nanoscale.

View Article and Find Full Text PDF

Labeling stem cells with magnetic nanoparticles is a promising technique for tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer.

View Article and Find Full Text PDF

Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme-nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (FeO NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of FeO NR@GOx with nanometer linking distances.

View Article and Find Full Text PDF

Engineering the protein corona (PC) on nanodrugs is emerging as an effective approach to improve their pharmacokinetics and therapeutic efficacy, but conventional in vitro pre-programmed methods have shown great limitation for regulation of the PC in the complex and dynamic in vivo physiological environment. Here, we demonstrate an magnetothermal regulation approach that allows us to in situ modulate the in vivo PC composition on iron oxide nanoparticles for improved cancer nanotherapy. Experimental results revealed that the relative levels of major opsonins and dysopsonins in the PC can be tuned quantitatively by means of heat induction mediated by the nanoparticles under an alternating magnetic field.

View Article and Find Full Text PDF

The iron oxide nanoparticles (IONPs) that combine the nanozyme activity and magnetothermal properties have attracted significant interest for various biomedical applications. However, the effect of magnetic stimulation in fine-tuning the nanozyme activities remains unclear. Here, we have constructed a series of IONPs with different magneto-thermal conversion abilities, and systematically study the effect of magnetic field stimulation on the peroxidase (POD) activity of IONPs.

View Article and Find Full Text PDF

Magnetic hyperthermia (MH) has been introduced clinically as an alternative approach for the focal treatment of tumors. MH utilizes the heat generated by the magnetic nanoparticles (MNPs) when subjected to an alternating magnetic field (AMF). It has become an important topic in the nanomedical field due to their multitudes of advantages towards effective antitumor therapy such as high biosafety, deep tissue penetration, and targeted selective tumor killing.

View Article and Find Full Text PDF

The ultrasonication-triggered interfacial assembly approach was developed to synthesize magnetic Janus amphiphilic nanoparticles (MJANPs) for cancer theranostic applications, where the biocompatible octadecylamine is used as a molecular linker to mediate the interactions between hydrophobic and hydrophilic nanoparticles across the oil-water interface. The obtained Co cluster-embedded FeO nanoparticles-graphene oxide (CCIO-GO) MJANPs exhibited superior magnetic heating efficiency and transverse relaxivity, 64 and 4 times higher than that of commercial superparamagnetic iron oxides, respectively. The methodology has been applicable to nanoparticles of various dimensions (5-100 nm), morphologies (sphere, ring, disk, and rod), and composition (metal oxides, noble metal and semiconductor compounds, etc.

View Article and Find Full Text PDF

The laccase-CuO-nanowire mesocrystal hybrid materials were developed with a superior catalytic activity inspired by natural biocatalysis processes in living cells that highly resemble the metal ions activation and the well-organized spatial structure of the natural rough endoplasmic reticulum. The enzyme and nanobiocatalyst activities of the obtained hybrid material exhibited an approximate 10-fold and 2.2-fold increase than the free enzyme, surpassing the currently available nanobiocatalysts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmg9n475ca1ajvd8cfm66n4tt94t74i2u): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once