Publications by authors named "Gallis B"

CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids.

View Article and Find Full Text PDF

Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin-glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown.

View Article and Find Full Text PDF

Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines.

View Article and Find Full Text PDF

Transferrin (Tf) conjugates of monomeric artemisinin (ART) and artemisinin dimer were synthesized. The two conjugates, ART-Tf and dimer-Tf, retained the original protein structure, and formed stable aggregates in aqueous buffer. ART-Tf induced declines in proteins involved in apoptosis (survivin), cell cycling (cyclin D1), oncogenesis (c-myelocytomatosis oncogene product (c-MYC)), and dysregulated WNT signaling (beta-catenin) in both the human prostate (DU145) and breast (MCF7) cancer cell lines.

View Article and Find Full Text PDF

Artemisinin is a plant-derived anti-malarial drug that has relatively low toxicity in humans and is activated by heme and/or intracellular iron leading to intracellular free radical formation. Interestingly, artemisinin has displayed anti-cancer activity, with artemisinin dimers being more potent than monomeric artemisinin. Intracellular iron uptake is regulated by the transferrin receptor (TfR), and the activity of artemisinin depends on the availability of iron.

View Article and Find Full Text PDF

The severe and fatal human disease, tularemia, results from infection with the Gram-negative pathogen Francisella tularensis. Identification of surface outer membrane proteins, specifically lipoproteins, has been of interest for vaccine development and understanding the initiation of disease. We sought to identify Francisella live vaccine strain lipoproteins that could be a component of a subunit vaccine and have adjuvant properties as TLR2 agonists.

View Article and Find Full Text PDF

Artemisinin, a natural product isolated from Artemisia annua, contains an endoperoxide group that can be activated by intracellular iron to generate toxic radical species. Cancer cells over-express transferrin receptors (TfR) for iron uptake while most normal cells express nearly undetectable levels of TfR. We prepared a series of artemisinin-tagged transferrins (ART-Tf) where different numbers of artemisinin units are attached to the N-glycoside chains of transferrin (Tf).

View Article and Find Full Text PDF

The proteins expressed by Francisella tularensis subsp. novicida U112 grown to midexponential phase were surveyed by nanoLC-tandem mass spectrometry (LC-MS/MS). To improve annotation of the genome and develop a technology to provide high-throughput analysis of the Francisella proteome in multiple conditions, we sought to establish a fast and simple analysis that would reduce as much as possible the false discovery rate.

View Article and Find Full Text PDF

Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA) and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT) method.

View Article and Find Full Text PDF

MglA is a transcriptional regulator of genes that contribute to the virulence of Francisella tularensis, a highly infectious pathogen and the causative agent of tularemia. This study used a label-free shotgun proteomics method to determine the F. tularensis subsp.

View Article and Find Full Text PDF

Background: Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.

Results: Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent genomic studies reveal that Y. pestis has genes similar to those of the insect pathogen Photorhabdus luminescens, suggesting a unique adaptation.
  • * A specific gene (yitR) plays a role in the production of certain proteins that may aid Y. pestis in infecting both mammals and insects, highlighting a new class of proteins crucial for its transmission.
View Article and Find Full Text PDF

The glutathione S-transferases (GSTs) are a family of phase II detoxification enzymes which protect against chemical injury. In contrast to mammals, GST expression in fish has not been extensively characterized, especially in the context of detoxifying waterborne pollutants. In the Northwestern United States, coho salmon (Oncorhynchus kisutch) are an important species of Pacific salmon with complex life histories that can include exposure to a variety of compounds including GST substrates.

View Article and Find Full Text PDF

Shotgun proteomics is rapidly becoming one of the most efficient and popular tools to examine protein expression in cells. Numerous laboratories now have a wide array of low- and high-performance mass spectrometry instrumentation necessary to complete proteome-wide projects. Often these laboratories have time and financial constraints that prohibit all projects from being conducted on high-performance state-of-the-art mass spectrometers.

View Article and Find Full Text PDF

Objective: To investigate whether fluid shear stress (FSS) induces endothelial nitric oxide synthase (eNOS) activity and NO production in isolated human corpus cavernosal endothelial cells (HCCECs), and whether this response is altered during hyperglycaemia in vitro, as haemodynamic signalling during penile erection induces eNOS-mediated NO production in vivo.

Materials And Methods: ECs were cultured from HCC and characterized by the uptake of acetylated low-density lipoprotein and the expression of von Willebrand factor, VE-cadherin, CD31 and eNOS. HCCECs were exposed to FSS (1.

View Article and Find Full Text PDF

Hyperglycemic impairment of nitric oxide (NO) production by endothelial cells is implicated in the effect of diabetes to increase cardiovascular disease risk, but the molecular basis for this effect is unknown. In skeletal muscle, diabetes induces activation of inhibitor kappaB kinase (IKKbeta), a key cellular mediator of the response to inflammatory stimuli, and this impairs insulin signal transduction via the insulin receptor substrate-phosphatidylinositol 3-OH kinase (IRS-1/PI3-kinase) pathway. Since activation of endothelial nitric oxide synthase (eNOS) is dependent on IRS-1/PI3-kinase signaling, we hypothesized that activation of IKKbeta may contribute to the effect of glucose to impair NO production.

View Article and Find Full Text PDF

Objective: Free fatty acids (FFA) are commonly elevated in diabetes and obesity and have been shown to impair nitric oxide (NO) production by endothelial cells. However, the signaling pathways responsible for FFA impairment of NO production in endothelial cells have not been characterized. Insulin receptor substrate-1 (IRS-1) regulation is critical for activation of endothelial nitric oxide synthase (eNOS) in response to stimulation by insulin or fluid shear stress.

View Article and Find Full Text PDF

Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis.

View Article and Find Full Text PDF

Endothelial cells release nitric oxide (NO) acutely in response to increased "flow" or fluid shear stress (FSS), and the increase in NO production is correlated with enhanced phosphorylation and activation of endothelial nitric oxide synthase (eNOS). Both vascular endothelial growth factor and FSS activate endothelial protein kinase B (PKB) by way of incompletely understood pathway(s), and, in turn, PKB phosphorylates eNOS at Ser-1179, causing its activation. In this study, we found that either FSS or insulin stimulated insulin receptor substrate-1 (IRS-1) tyrosine and serine phosphorylation and increased IRS-1-associated phosphatidylinositol 3-kinase activity, phosphorylation of PKB Ser-473, phosphorylation of eNOS Ser-1179, and NO production.

View Article and Find Full Text PDF

Thrombopoietin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Numerous studies have shown that TPO binding leads to JAK2 kinase activation and Tyr phosphorylation of c-Mpl and several intracellular signaling intermediates, events vital for the biological activity of the hormone. In contrast, virtually nothing is known of the role of Ser or Thr phosphorylation of c-Mpl.

View Article and Find Full Text PDF

Endothelial cells release nitric oxide (NO) acutely in response to increased laminar fluid shear stress, and the increase is correlated with enhanced phosphorylation of endothelial nitric-oxide synthase (eNOS). Phosphoamino acid analysis of eNOS from bovine aortic endothelial cells labeled with [(32)P]orthophosphate demonstrated that only phosphoserine was present in eNOS under both static and flow conditions. Fluid shear stress induced phosphate incorporation into two specific eNOS tryptic peptides as early as 30 s after initiation of flow.

View Article and Find Full Text PDF

Electrospray ionization (ESI) tandem mass spectrometry (MS/MS) of peptides in conjunction with automated sequence database searching of the resulting collision-induced dissociation (CID) spectra has become a powerful method for the identification of purified proteins or the components of protein mixtures. The success of the method is critically dependent on the manner by which the peptides are introduced into the mass spectrometer. In this report, we describe a capillary electrophoresis-based system for the automated, sensitive analysis of complex peptide mixtures.

View Article and Find Full Text PDF

The Na+/H+ exchanger isoform-1 (NHE-1) is the key member of a family of exchangers that regulates intracellular pH and cell volume. Activation of NHE-1 by growth factors is rapid, correlates with increased NHE-1 phosphorylation and cell alkalinization, and plays a role in cell cycle progression. By two-dimensional tryptic peptide mapping of immunoprecipitated NHE-1, we identify serine 703 as the major serum-stimulated amino acid.

View Article and Find Full Text PDF

The calcium-dependent mAb, M1 (also called anti-Flag or 4E11) was studied using a newly developed metal-sensitive enzyme-linked immunosorbent assay (ELISA). This antibody, specific for a calcium complex of the peptide antigen, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys, has found widespread use as a mild purification reagent for Flag-epitope tagged recombinant proteins. Although M1 affinity columns release monovalent Flagged proteins in the absence of calcium, the antibody retains substantial affinity for the Flag sequence even in metal-free conditions, so that it has been impossible to use it to develop a metal-sensitive ELISA assay.

View Article and Find Full Text PDF

Ligation of interleukin 2 (IL2) is known to regulate both protein tyrosine and serine/threonine phosphorylation. A family of leukocyte transmembrane proteins whose cytoplasmic domain exhibits intrinsic protein tyrosine phosphatase activity is collectively called CD45 and is identified by a set of common cell surface epitopes. Although CD45 is known to be a phosphoprotein, it is not known how phosphorylation specifically regulates its function.

View Article and Find Full Text PDF