Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint.
View Article and Find Full Text PDFProteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far.
View Article and Find Full Text PDFNeural regeneration and neuroprotection represent strategies for future management of neurodegenerative disorders such as Alzheimer's disease (AD) or glaucoma. However, the complex molecular mechanisms that are involved in neuroprotection are not clearly understood. A promising candidate that maintains neuroprotective signaling networks is neuroserpin (Serpini1), a serine protease inhibitor expressed in neurons which selectively inhibits extracellular tissue-type plasminogen activator (tPA)/plasmin and plays a neuroprotective role during ischemic brain injury.
View Article and Find Full Text PDFThe neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons.
View Article and Find Full Text PDFNeuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years.
View Article and Find Full Text PDFFamilial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death.
View Article and Find Full Text PDFAccumulating evidence suggests X-linked dominant mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD) through both loss- and gain-of-function mechanisms. However, the mechanisms by which the mutations cause disease are still unclear. The goal of the study was to uncover the possible pathomechanism(s) by which UBQLN2 mutations cause ALS/FTD.
View Article and Find Full Text PDFNeuroserpin is a serine protease inhibitor that regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin is strongly expressed during nervous system development as well as during adulthood, when it is predominantly found in regions eliciting synaptic plasticity. In the hippocampus, neuroserpin regulates developmental neurogenesis, synaptic maturation and in adult mice it modulates synaptic plasticity and controls cognitive and social behavior.
View Article and Find Full Text PDFThe structurally disordered N-terminal half of the prion protein (PrP) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aβ) in Alzheimer's disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1).
View Article and Find Full Text PDFNeuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice.
View Article and Find Full Text PDFThe serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses.
View Article and Find Full Text PDFFamilial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare disease characterized by the deposition of multiple intracytoplasmic neuronal inclusions that contain mutated neuroserpin. Tg-Syracuse (Tg-Syr) mice express Ser49Pro mutated neuroserpin and develop clinical and neuropathological features of human FENIB. We used 8-, 34-, 45- and 80-week-old Tg-Syr mice to characterize neuroinflammation and the unfolded protein response (UPR) in a neurodegenerative disease in which abnormal protein aggregates accumulate within the endoplasmic reticulum (ER).
View Article and Find Full Text PDFA feature of neurodegenerative diseases is the intraneuronal accumulation of misfolded proteins. In familial encephalopathy with neuroserpin inclusion bodies (FENIB), mutations in neuroserpin lead to accumulation of neuroserpin polymers within the endoplasmic reticulum (ER) of neurons. Cell culture based studies have shown that ER-associated degradation (ERAD) is involved in clearance of mutant neuroserpin.
View Article and Find Full Text PDFPurpose: Mutations in the CLN6 gene cause variant late-infantile neuronal ceroid lipofuscinosis, a lysosomal storage disorder clinically characterized by progressive loss of vision, dementia, seizures, and early death. Here, we analyzed the time course of photoreceptor loss and the role of lysosomes in nclf mice, an animal model of the human CLN6 disease.
Methods: Labeling of apoptotic cells, activated astrocytes, and Müller cells, and expression analyses of glial fibrillary acidic protein, rhodopsin, and lysosomal proteins were performed on nclf mice during the course of retinal degeneration.
The serine peptidase neurotrypsin is stored in presynaptic nerve endings and secreted in an inactive zymogenic form by synaptic activity. After activation, which requires activity of postsynaptic NMDA (N-methyl-D-aspartate) receptors, neurotrypsin cleaves the heparan sulfate proteoglycan agrin at active synapses. The resulting C-terminal 22-kDa fragment of agrin induces dendritic filopodia, which are considered to be precursors of new synapses.
View Article and Find Full Text PDFVariant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease.
View Article and Find Full Text PDFMutations in the CLN6 gene cause a variant form of late infantile neuronal ceroid lipofuscinosis, a relentless neurodegenerative disease that is inherited as an autosomal recessive trait in humans and in the naturally occurring nclf mouse strain. The CLN6 protein is localized in the endoplasmic reticulum, but it has an unknown function. To develop a molecular understanding of neurodegeneration induced by mutations in CLN6, we examined the spatial and temporal distribution of Cln6 mRNA expression in murine brain.
View Article and Find Full Text PDFNewly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III.
View Article and Find Full Text PDFOne variant form of late infantile neuronal ceroid lipofuscinosis is an autosomal recessive inherited neurodegenerative lysosomal storage disorder caused by mutations in the CLN6gene. The function of the polytopic CLN6 membrane protein localized in the endoplasmic reticulum is unknown. Here we report on expression studies of three mutations (c.
View Article and Find Full Text PDFIntracellular protein deposition due to aggregation caused by conformational alteration is the hallmark of a number of neurodegenerative disorders, including Parkinson's disease, tauopathies, Huntington's disease, and familial encephalopathy with neuroserpin inclusion bodies. The latter is an autosomal dominant disorder caused by point mutations in neuroserpin resulting in its destabilization. Mutant neuroserpin polymerizes and forms intracellular aggregates that eventually lead to neurodegeneration.
View Article and Find Full Text PDFNeuroserpin is a member of the serpin family of serine protease inhibitors. Tissue distribution analysis reveals a predominantly neuronal expression during the late stages of neurogenesis and, in the adult brain, in areas where synaptic changes are associated with learning and memory (synaptic plasticity). In vitro studies revealed complex formation between neuroserpin and different serine proteases, i.
View Article and Find Full Text PDF