Ageing Res Rev
December 2024
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia.
View Article and Find Full Text PDFPsychological factors are amongst the most robust predictors of healthspan and longevity, yet are rarely incorporated into scientific and medical frameworks of aging. The prospect of characterizing and integrating the psychological influences of aging is therefore an unmet step for the advancement of geroscience. Psychogenic Aging research is an emerging branch of biogerontology that aims to address this gap by investigating the impact of psychological factors on human longevity.
View Article and Find Full Text PDFGeriatric rehabilitation inpatients have high levels of sedentary behaviour (SB) and low levels of physical activity (PA). Biological age predicted by blood biomarkers is indicative of adverse outcomes. The objective was to determine the association between blood biological age at rehabilitation admission and levels of SB and PA during rehabilitation in geriatric inpatients.
View Article and Find Full Text PDFBackground: Accelerated biological ageing is a major underlying mechanism of frailty development. This study aimed to investigate if the biological age measured by a blood biochemistry-based ageing clock is associated with frailty in geriatric rehabilitation inpatients.
Methods: Within the REStORing health of acutely unwell adulTs (RESORT) cohort, patients' biological age was measured by an ageing clock based on completed data of 30 routine blood test variables measured at rehabilitation admission.
Epigenetic aging clocks have gained significant attention as a tool for predicting age-related health conditions in clinical and research settings. They have enabled geroscientists to study the underlying mechanisms of aging and assess the effectiveness of anti-aging therapies, including diet, exercise and environmental exposures. This review explores the effects of modifiable lifestyle factors' on the global DNA methylation landscape, as seen by aging clocks.
View Article and Find Full Text PDFWe have developed a deep learning aging clock using blood test data from the China Health and Retirement Longitudinal Study, which has a mean absolute error of 5.68 years. We used the aging clock to demonstrate the connection between the physical and psychological aspects of aging.
View Article and Find Full Text PDFDeepMAge is a deep-learning DNA methylation aging clock that measures the organismal pace of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can predict chronological age within a 2.8 years error margin, but in saliva samples, its performance is drastically reduced since aging clocks are restricted by the training set domain.
View Article and Find Full Text PDFIn this article, we present a deep learning model of human psychology that can predict one's current age and future well-being. We used the model to demonstrate that one's baseline well-being is not the determining factor of future well-being, as posited by hedonic treadmill theory. Further, we have created a 2D map of human psychotypes and identified the regions that are most vulnerable to depression.
View Article and Find Full Text PDFIdentifying prognostic biomarkers and risk stratification for COVID-19 patients is a challenging necessity. One of the core survival factors is patient age. However, chronological age is often severely biased due to dormant conditions and existing comorbidities.
View Article and Find Full Text PDFDNA methylation aging clocks have become an invaluable tool in biogerontology research since their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an especially promising approach that has been used to construct accurate clocks using blood biochemistry, transcriptomics, and microbiomics data-feats unachieved by other algorithms.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries.
View Article and Find Full Text PDFThe human gut microbiome is a complex ecosystem that both affects and is affected by its host status. Previous metagenomic analyses of gut microflora revealed associations between specific microbes and host age. Nonetheless there was no reliable way to tell a host's age based on the gut community composition.
View Article and Find Full Text PDFThe aging process results in multiple traceable footprints, which can be quantified and used to estimate an organism's age. Examples of such aging biomarkers include epigenetic changes, telomere attrition, and alterations in gene expression and metabolite concentrations. More than a dozen aging clocks use molecular features to predict an organism's age, each of them utilizing different data types and training procedures.
View Article and Find Full Text PDFBull Exp Biol Med
January 2019
Activities of MMP-2 and MMP-9 in the cytoplasm and mitochondria of kidney cells were evaluated on the models of acute renal pathologies: pyelonephritis, rhabdomyolysis, and ischemia/reperfusion of the kidney. In acute pyelonephritis, a significant increase in the level of MMP-2 and MMP-9 in kidney cells and the appearance of mitochondrial MMP-2 isoform with a lower molecular weight, but still exhibiting proteolytic activity were observed. A direct correlation between the level of MMP-2 and MMP-9 in the kidney and the severity of inflammation in pyelonephritis was revealed.
View Article and Find Full Text PDFMost multicellular organisms are known to age, due to accumulation of damage and other deleterious changes over time. These changes are often irreversible, as organisms, humans included, evolved fully differentiated, irreplaceable cells (e.g.
View Article and Find Full Text PDFIt was found that, in the differentiated cells of mouse brain, the level of core (Brg1 and BAF155) and specific (BRD7, BAF180, and PHF10) subunits of the chromatin-remodeling complex PBAF is reduced compared to the undifferentiated proliferating cells. Phosphorylation of PBAF complex subunits is required for maintaining their stability in differentiated brain cells.
View Article and Find Full Text PDF