Mutations in the gene, encoding the Gβ subunit of heterotrimeric G proteins, cause Encephalopathy. Patients experience seizures, pointing to abnormal activity of ion channels or neurotransmitter receptors. We studied three Gβ mutations (K78R, I80N and I80T) using computational and functional approaches.
View Article and Find Full Text PDFThe tetrameric G protein-gated K channels (GIRKs) mediate inhibitory effects of neurotransmitters that activate G-coupled receptors. GIRKs are activated by binding of the Gβγ dimer, via contacts with Gβ. Gγ underlies membrane targeting of Gβγ, but has not been implicated in channel gating.
View Article and Find Full Text PDFThe G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gβγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gβγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gβγ.
View Article and Find Full Text PDFBackground: Our original demonstration of immunomodulatory effects of erythropoietin in multiple myeloma led us to the search for the cells in the immune system that are direct targets for erythropoietin. The finding that lymphocytes do not express erythropoietin receptors led to the hypothesis that other cells act as direct targets and thus mediate the effects of erythropoietin. The finding that erythropoietin has effects on dendritic cells thus led to the question of whether macrophages act as target cells for erythropoietin.
View Article and Find Full Text PDF