Cobalt is a trace element, crucial for red blood cell formation and neurological function. Cobalt toxicity is often only diagnosed after severe manifestations, including visual impairment. We aimed to investigate whether optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can effectively detect cobalt-induced ocular toxicity in a murine model.
View Article and Find Full Text PDFHistidine dipeptides (HDs) are synthesized in brain oligodendrocytes by carnosine synthase (carns1), but their role is unknown. Using metabolomics and in vivo experiments with both constitutive and oligodendrocyte-selective carns1-KO mouse models, we found that HDs are critical for oligodendrocyte survival and protect against oxidative stress. Carns1-KO mouse models had lower numbers of mature oligodendrocytes, increased lipid peroxidation, and behavioral changes.
View Article and Find Full Text PDFThe present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres.
View Article and Find Full Text PDFThe current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast.
View Article and Find Full Text PDFNanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow.
View Article and Find Full Text PDFMulti-modal imaging, by light-microscopy (LM) and Magnetic Resonance Imaging (MRI), holds promise for examining the brain across various resolutions and scales. While MRI acquires images in three dimensions, acquisition of intact whole-brain by LM requires a process of tissue clearing that renders the brain transparent. Removal of lipids (delipidation) is a critical step in the tissue clearing process, and was previsouly suggested to be the cause for absence of MRI contrast in cleared brains.
View Article and Find Full Text PDFMethacrylation was performed on fibrinogen to design a new biomedical hydrogel for 3D cell culture or as a biodegradable delivery matrix for in vivo implantation. The methacrylation of denatured fibrinogen in solution was performed using methacrylic anhydride (MAA). The extent of fibrinogen methacrylation was quantified by proton NMR and controlled using stochiometric quantities of MAA during the reaction.
View Article and Find Full Text PDFYears before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and β-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause β-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of β-amyloid that occurs in human AD, we investigated the progressive accumulation of β-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a genetic disease caused by a mutation in the X-linked Dytrophin gene preventing the expression of the functional protein. Exon skipping therapy using antisense oligonucleotides (AONs) is a promising therapeutic strategy for DMD. While benefits of AON therapy have been demonstrated, some challenges remain before this strategy can be applied more comprehensively to DMD patients.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2022
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues.
View Article and Find Full Text PDFContrast agents improve clinical and basic research MRI. The manganese ion (Mn ) is an essential, endogenous metal found in cells and it enhances MRI contrast because of its paramagnetic properties. Manganese-enhanced MRI (MEMRI) has been widely used to image healthy and diseased states of the body and the brain in a variety of animal models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Central or peripheral injury causes reorganization of the brain's connections and functions. A striking change observed after unilateral stroke or amputation is a recruitment of bilateral cortical responses to sensation or movement of the unaffected peripheral area. The mechanisms underlying this phenomenon are described in a mouse model of unilateral whisker deprivation.
View Article and Find Full Text PDFFront Neural Circuits
June 2019
MRI has been extensively used in neurodegenerative disorders, such as Alzheimer's disease (AD), frontal-temporal dementia (FTD), mild cognitive impairment (MCI), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). MRI is important for monitoring the neurodegenerative components in other diseases such as epilepsy, stroke and multiple sclerosis (MS). Manganese enhanced MRI (MEMRI) has been used in many preclinical studies to image anatomy and cytoarchitecture, to obtain functional information in areas of the brain and to study neuronal connections.
View Article and Find Full Text PDFPurpose: Manganese ion has been extensively used as a magnetic resonance imaging (MRI) contrast agent in preclinical studies to assess tissue anatomy, function, and neuronal connectivity. Unfortunately, its use in human studies has been limited by cellular toxicity and the need to use a very low dose. The much higher sensitivity of positron emission tomography (PET) over MRI enables the use of lower concentrations of manganese, potentially expanding the methodology to humans.
View Article and Find Full Text PDFManganese enhanced MRI (MEMRI) was used to detect specific laminar changes in the olfactory bulb (OB) to follow the progression of amyloid precursor protein (APP)-induced neuronal pathology and its recovery in a reversible olfactory based Alzheimer's disease (AD) mouse model. Olfactory dysfunction is an early symptom of AD, which suggests that olfactory sensory neurons (OSNs) may be more sensitive to AD related factors than neurons in other brain areas. Previously a transgenic mouse model was established that causes degeneration of OSNs by overexpressing humanized APP (hAPP), which results in a disruption of the olfactory circuitry with changes in the glomerular structure.
View Article and Find Full Text PDFIn this study, it is shown that the chemical exchange saturation transfer (CEST) method for hydroxyl protons can be used to detect changes in glycosaminoglycan (GAG) concentration in the intervertebral disc. The method, termed gagCEST, was demonstrated ex vivo by correlating the CEST effect with the fixed charge density (FCD) of the nucleus pulposus (NP), as well as by correlating tissue CEST images with their corresponding (23)Na images. Incubation of five NP samples with trypsin produced samples with varying GAG content (n = 19).
View Article and Find Full Text PDFIn order to investigate intervertebral disc (IVD) degeneration and repair, a quantitative non-invasive tool is needed. Various MRI methods including qCPMG, which yields dipolar echo relaxation time (T(DE)), magnetization transfer contrast (MTC), and (1)H and (2)H double quantum filtered (DQF) MRI were used in the present work to monitor changes in rat IVD after ablation of the nucleus pulposus (NP), serving as a model of severe IVD degeneration. In the intact IVD, a clear distinction between the annulus fibrosus (AF) and the NP is obtained on T(2) and T(DE) weighted images as well as on MTC maps, reflecting the high concentration of ordered collagen fibers in the AF.
View Article and Find Full Text PDFOne of the functions of articular cartilage is to withstand recurrent pressure applied in everyday life. In previous studies, osmotic pressure has been used to mimic the effects of mechanical pressure. In the present study, the response of the collagen network of intact and proteoglycans (PG)-depleted cartilage to mechanical and osmotic pressures is compared.
View Article and Find Full Text PDF