Chimeric antigen receptors (CARs) are immunoreceptors that redirect T cells to selectively kill tumor cells. Given their clinical successes in hematologic malignancies, there is a strong aspiration to advance this immunotherapy for solid cancers; hence, molecular CAR design and careful target choice are crucial for their function. To evaluate the functional significance of the biophysical properties of CAR binding (i.
View Article and Find Full Text PDFAdoptive cell immunotherapy with chimeric antigen receptor (CAR) showed limited potency in solid tumors, despite durable remissions for hematopoietic malignancies. Therefore, an investigation of ways to enhance the efficacy of CARs' antitumor response has been engaged upon. We previously examined the interplay between the biophysical parameters of CAR binding (i.
View Article and Find Full Text PDFBacterial and viral infections are often clinically indistinguishable, leading to inappropriate patient management and antibiotic misuse. Bacterial-induced host proteins such as procalcitonin, C-reactive protein (CRP), and Interleukin-6, are routinely used to support diagnosis of infection. However, their performance is negatively affected by inter-patient variability, including time from symptom onset, clinical syndrome, and pathogens.
View Article and Find Full Text PDFAdoptive transfer of Ag-specific T lymphocytes is an attractive form of immunotherapy for cancers. However, acquiring sufficient numbers of host-derived tumor-specific T lymphocytes by selection and expansion is challenging, as these cells may be rare or anergic. Using engineered T cells can overcome this difficulty.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies are becoming a significant and rapidly growing class of therapeutic pharmaceuticals. Their discovery and development requires fast and high-throughput methodologies for screening and selecting appropriate candidate antibodies having high affinity for the target as well as high specificity and low cross-reactivity. This study demonstrates the use of the ProteOn XPR36 protein interaction array system and its novel approach, termed One-Shot Kinetics, for the rapid screening and selection of high-affinity antibodies.
View Article and Find Full Text PDFPeptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase.
View Article and Find Full Text PDFIn this study, we have explored the use of Fab-toxin proteins (immunotoxin) to target antigen-specific MHC-peptide complexes of in vitro and in vivo cancer cells. A human phage display library was used to screen for T-cell receptor (TCR)-like antibodies that are highly specific for the peptide melanoma-associated antigen MART-1(26-35) presented by HLA-A201. We also used previously selected TCR-like antibodies specific for the peptide melanoma-associated antigen gp100(280-288) presented by HLA-A201.
View Article and Find Full Text PDFThe glycolipid alpha-galactosylceramide (alpha-GalCer) is a potent activator of invariant natural killer T (iNKT) cells and has been shown to be an effective agent against cancer, infections and autoimmune diseases. The effectiveness of alpha-GalCer and its alkyl chain analogues depends on efficient loading and presentation by the antigen-presenting molecule CD1d. To monitor the ability of CD1d to present the glycolipids, we have used a phage display strategy to generate recombinant antibodies with T cell receptor-like (TCRL) specificity against the human CD1d (hCD1d)-alpha-GalCer complex.
View Article and Find Full Text PDFCD1d-restricted lymphocytes recognize a broad lipid range. However, how CD1d-restricted lymphocytes translate T cell receptor (TCR) recognition of lipids with similar group heads into distinct biological responses remains unclear. Using a soluble invariant NKT (iNKT) TCR and a newly engineered antibody specific for alpha-galactosylceramide (alpha-GalCer)-human CD1d (hCD1d) complexes, we measured the affinity of binding of iNKT TCR to hCD1d molecules loaded with a panel of alpha-GalCer analogues and assessed the rate of dissociation of alpha-GalCer and alpha-GalCer analogues from hCD1d molecules.
View Article and Find Full Text PDFCTLs act as the effector arm of the cell-mediated immune system to kill undesirable cells. Two processes regulate these effector cells to prevent self reactivity: a thymic selection process that eliminates autoreactive clones and a multistage activation or priming process that endows them with a license to kill cognate target cells. Hitherto no subsequent regulatory restrictions have been ascribed for properly primed and activated CTLs that are licensed to kill.
View Article and Find Full Text PDFMHC class I molecules play a central role in the immune response against a variety of cells that have undergone malignant transformation by shaping the T cell repertoire and by presenting peptide antigens from endogeneous antigens to CD8+ cytotoxic T cells. Because of their unique specificity such MHC-peptide complexes are a desirable target for novel approaches in immunotherapy. Targeted delivery of toxins or other cytotoxic drugs to cells which express specific MHC-peptide complexes that are involved in the immune response against cancer or viral infections would allow for a specific immunotherapeutic treatment of these diseases.
View Article and Find Full Text PDFThe awareness of the important role that the surrounding tissue microenvironment and stromal response play in the process of tumorigenesis has grown as a result of in vivo models of tumor xenograft growth in immunocompromised mice. In the current study, we used human embryonic stem cells in order to study the interactions of tumor cells with the surrounding microenvironment of differentiated human cell tissues and structures. Several cancer cell types stably expressing an H2A-green fluorescence protein fusion protein, which allowed tracking of tumor cells, were injected into mature teratomas and developed into tumors.
View Article and Find Full Text PDFMajor histocompatibility complex class I molecules play a central role in the immune response against a variety of cells that have undergone malignant transformation by shaping the T-cell repertoire and presenting peptide antigens from endogeneous antigens to CD8+ cytotoxic T-cells. Diseased tumor or virus-infected cells are present on class I major histocompatibility complex molecule peptides that are derived from tumor-associated antigens or viral-derived proteins. Due to their unique specificity, such major histocompatibility complex-peptide complexes are a desirable target for novel approaches in immunotherapy.
View Article and Find Full Text PDFThe advent in recent years of the application of tetrameric arrays of class I peptide-MHC complexes now enables us to detect and study rare populations of antigen-specific CD8+ T cells. However, available methods cannot visualize or determine the number and distribution of these TCR ligands on individual cells or detect antigen-presenting cells (APCs) in tissues. Here we describe a new approach that enables study of human class I peptide-MHC ligand-presentation as well as TCR-peptide-MHC interactions.
View Article and Find Full Text PDFTumor-associated, MHC-restricted peptides, recognized by tumor-specific CD8(+) lymphocytes, are desirable targets for novel approaches in immunotherapy because of their highly restricted fine specificity. Abs that recognize these tumor-associated MHC-peptide complexes, with the same specificity as TCR, would therefore be valuable reagents for studying Ag presentation by tumor cells, for visualizing MHC-peptide complexes on cells, and eventually for developing new targeting agents for cancer immunotherapy. To generate molecules with such a unique, fine specificity, we immunized HLA-A2 transgenic mice with a single-chain HLA-A2, complexed with a common antigenic T cell HLA-A2-restricted epitope derived from the melanoma differentiation Ag gp100.
View Article and Find Full Text PDFThe recent advent of peptide-MHC tetramers has provided a new and effective tool for studying antigen-specific T cell populations through monitoring tetramer binding to T cells by flow cytometry. Yet information regarding T cell activation induced by the bound tetramers cannot be deduced from binding studies alone; complementary methods are needed to bridge this gap. To this end, we have developed a new approach that now enables monitoring both binding to and activation of T cells by peptide-MHC tetramers at the single-cell level.
View Article and Find Full Text PDFA common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immunotherapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues.
View Article and Find Full Text PDFSpecificity in the cellular immune system is controlled and regulated by the T cell antigen receptor (TCR), which specifically recognizes peptide/major histocompatibility complex (MHC) molecules. In recent years many cancer-associated MHC-restricted peptides have been isolated and because of their highly restricted fine specificity, they are desirable targets for novel approaches in immunotherapy. Antibodies that would recognize tumor-associated MHC-peptide complexes with the same specificity as the TCR would be valuable reagents for studying antigen presentation by tumor cells, for visualizing MHC-peptide complexes on cells, and eventually for monitoring the expression of specific complexes during immunotherapy.
View Article and Find Full Text PDFThe recent characterization of MHC-displayed tumor-associated antigensthat recognize effector cells of the immune system has created new perspectives for cancer therapy. Antibodies that recognize these tumor-associated MHC-peptide complexes with the same specificity as the T-cell antigen receptor will therefore be valuable tools for immunotherapy as well as for studying antigen presentation in human cancers. Most tumor-associated antigens are expressed in only one or a few tumor types; however, recently specific T-cell epitopes derived from the telomerase catalytic subunit (hTERT) that are widely expressed in many cancers were identified and shown to be recognized by CTLs derived from cancer patients.
View Article and Find Full Text PDF