The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times. In this work, we analyse the influence of medium formulation on the growth and productivity of axenic Phaeodactylum tricornutumcultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy.
View Article and Find Full Text PDFBioplastics are a sustainable and environmental-friendly alternative to the conventional petroleum-based plastics, namely due to their source (biobased) and due to their biodegradability or both. Polyhydroxyalkanoates (PHA) stand out among the bioplastics group by being intracellular biobased, biodegradable and biocompatible polymers. PHA production has been highly investigated during the last decades.
View Article and Find Full Text PDFPlants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools.
View Article and Find Full Text PDFMembranes (Basel)
December 2022
The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological and membrane performance. Additionally, the development of membrane fouling and the requirements for frequent membrane cleaning are still major concerns during MBR operation, requiring tight monitoring and system characterization. Transmembrane pressure is usually monitored online and allows following the evolution of membrane performance.
View Article and Find Full Text PDFThis work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment.
View Article and Find Full Text PDFMicroalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real-time process control of a microalgae production factory still require further development.
View Article and Find Full Text PDFMembranes (Basel)
July 2021
Membrane processes are complex systems, often comprising several physicochemical phenomena, as well as biological reactions, depending on the systems studied. Therefore, process modelling is a requirement to simulate (and predict) process and membrane performance, to infer about optimal process conditions, to assess fouling development, and ultimately, for process monitoring and control. Despite the actual dissemination of terms such as Machine Learning, the use of such computational tools to model membrane processes was regarded by many in the past as not useful from a scientific point-of-view, not contributing to the understanding of the phenomena involved.
View Article and Find Full Text PDFThe present study focused on the methodology for identification of the wastewater stream that presents the highest phenolic impact at a large oil refinery. As a case-study, the oil refinery, Petrogal S.A.
View Article and Find Full Text PDFOnline monitoring of algal biotechnological processes still requires development to support economic sustainability. In this work, fluorescence spectroscopy coupled with chemometric modelling is studied to monitor simultaneously several compounds of interest, such as chlorophyll and fatty acids, but also the biomass as a whole (cell concentration). Fluorescence excitation-emission matrices (EEM) were acquired in experiments where different environmental growing parameters were tested, namely light regime, temperature and nitrogen (replete or deplete medium).
View Article and Find Full Text PDFThis work is focused on production of volatile fatty acids (VFA) through anaerobic digestion (AD) using raw (without pre-treatment) brewers' spent grain (BSG) as feedstock. VFAs are by-products from AD of organic wastes with wide potential industrial application in bioplastic production. A long term fed batch stirred-tank reactor was operated and the impact of three hydraulic retention times (HRT) and two organic loading rates (OLR) on VFA production was assessed.
View Article and Find Full Text PDFAnthocyanin lipophilization emerged as an efficient technique to improve their chemical stability, liposolubility and antioxidant properties for novel technological applications. This work describes an efficient method for the synthesis of cyanidin-3-glucoside-fatty acid conjugate using a Candida antarctica lipase B-rich extract, without further purification and retained in a porous membrane. Due to the enzyme retention within the membrane structure it was possible to improve the yield of the lipophilization reaction by 2.
View Article and Find Full Text PDFHow do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge.
View Article and Find Full Text PDFThe increase of salt concentrations in influent wastewaters will be a consequence of the sea level rises in coastal areas due to climate change and the future use of seawater to flush toilets as a cost-attractive option for alternative water resources. Yet, little is known about the salinity effect on full-scale wastewater treatment plants (WWTPs) performance and on greenhouse gas (GHG) emissions, such as nitrous oxide (NO). This study aimed at quantifying the NO emissions of a full-scale biological aerated filter (BAF) and to correlate the dynamic behavior of the emissions with the process conditions and the periods of infiltration of seawater.
View Article and Find Full Text PDFFew attempts have been made in previous studies to link the microbial community structure and function with nitrous oxide (NO) emissions at full-scale wastewater treatment plants (WWTPs). In this work, high-throughput sequencing and reverse transcriptase-qPCR (RT-qPCR) was applied to activated sludge samples from three WWTPs for two seasonal periods (winter and summer) and linked with the NO emissions and wastewater characteristics. The total NO emissions ranged from 7.
View Article and Find Full Text PDFSalt marshes act as natural deposits of different metals (e.g. heavy-metals), while halophyte plants are known to retain and accumulate them in the different tissues.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2017
The treatment of large volumes of wastewater during oil refining is presently a challenge. Bioremediation has been considered an eco-friendly approach for the removal of polycyclic aromatic hydrocarbons (PAHs), which are one of the most hazardous groups of organic micropollutants. However, it is crucial to identify native PAH-removing microorganisms for the development of an effective bioremediation process.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process of acidogenesis, PHA culture selection and accumulation. This research focused on the possibility of tailoring PHA by controlling the acidogenic reactor operating conditions, namely pH, using cheese whey as model feedstock.
View Article and Find Full Text PDFMembrane bioreactors (MBRs) are an advanced technology for wastewater treatment whose wide application has been hindered by rapid fouling of the membranes. MBRs can be operated with long sludge retention time (SRT), a crucial parameter impacting microbial selection in the reactor. This also affects filtration performance, since a major fouling agent are the extracellular polymeric substances (EPS).
View Article and Find Full Text PDFIn non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana.
View Article and Find Full Text PDFReverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation.
View Article and Find Full Text PDFAgronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis.
View Article and Find Full Text PDFChitin-glucan complex (CGC) is a valuable biomaterial that can be extracted from the cell wall of several yeast and fungi. In this work, the yeast Komagataella (Pichia) pastoris was grown on glycerol as the sole carbon source in batch cultivation experiments to evaluate the effect of pH (3.5-6.
View Article and Find Full Text PDFIn this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks.
View Article and Find Full Text PDFA major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype.
View Article and Find Full Text PDF