Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on ^{127}I with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy (≤50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measurement of its inclusive cross section. After a five-year detector exposure, COHERENT reports a flux-averaged cross section for electron neutrinos of 9.
View Article and Find Full Text PDFThe COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c^{2} using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keV_{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei.
View Article and Find Full Text PDFWe measured the cross section of coherent elastic neutrino-nucleus scattering (CEvNS) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source at Oak Ridge National Laboratory. New data collected before detector decommissioning have more than doubled the dataset since the first observation of CEvNS, achieved with this detector. Systematic uncertainties have also been reduced with an updated quenching model, allowing for improved precision.
View Article and Find Full Text PDFThe PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy.
View Article and Find Full Text PDFA joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent.
View Article and Find Full Text PDFThree-step resonance photoionization spectra of plutonium have been studied with Ti:Sapphire lasers for the development of efficient laser ionization schemes for ultra-trace analysis of Pu isotopes by resonance ionization mass spectrometry. We observed eighteen intermediate excited states of even parity in the energy range 35568-36701 [Formula: see text], thirteen of them have not been previously documented, and a larger number of high-lying excited states and autoionizing states of odd-parity between 48238 and 49510 [Formula: see text]. Three-color, three-photon ionization schemes via six intermediate states were evaluated under similar ion source operating conditions.
View Article and Find Full Text PDFPhys Rev Lett
January 2021
We report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.
View Article and Find Full Text PDFReactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of is important when making theoretical predictions. One source of that is often neglected arises from the irradiation of the nonfuel materials in reactors.
View Article and Find Full Text PDFThe structure of a neutron-rich ^{25}F nucleus is investigated by a quasifree (p,2p) knockout reaction at 270A MeV in inverse kinematics. The sum of spectroscopic factors of π0d_{5/2} orbital is found to be 1.0±0.
View Article and Find Full Text PDFRadioactive ^{129}Sb, which can be treated as a proton plus semimagic ^{128}Sn core within the particle-core coupling scheme, was studied by Coulomb excitation. Reduced electric quadrupole transition probabilities, B(E2), for the 2^{+}⊗πg_{7/2} multiplet members and candidate πd_{5/2} state were measured. The results indicate that the total electric quadrupole strength of ^{129}Sb is a factor of 1.
View Article and Find Full Text PDFThis Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U.
View Article and Find Full Text PDFThis Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays.
View Article and Find Full Text PDFThe Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.
View Article and Find Full Text PDFThe coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. We observed this process at a 6.
View Article and Find Full Text PDFRadioactive ^{136}Te has two valence protons and two valence neutrons outside of the ^{132}Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of ^{136}Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0_{1}^{+}→2_{1}^{+}), Q(2_{1}^{+}), and g(2_{1}^{+}). The results indicate that the first-excited state, 2_{1}^{+}, composed of the simple 2p⊕2n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested.
View Article and Find Full Text PDFIon beam purity is of crucial importance to many basic and applied studies in nuclear science. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated.
View Article and Find Full Text PDFThe time delay in fission induced by bombardment of W with 180 MeV 32S, 240-255 MeV 48Ti, and 315-375 MeV 58Ni has been measured by observation of crystal blocking. There is a clear narrowing and a small increase in the minimum yield of the angular dips for fission compared with scaled dips for elastically scattered ions. This is interpreted as a fission delay of about 2 as, only weakly dependent on energy and atomic number.
View Article and Find Full Text PDFFollowing Coulomb excitation of the radioactive ion beam (RIB) 132Te at HRIBF we report the first use of the recoil-in-vacuum (RIV) method to determine the g factor of the 2(+)(1) state: g(973.9 keV 2(+) 132Te) = (+)0.35(5).
View Article and Find Full Text PDFThe B(E2;0(+)(1)-->2(+)(1)) values for the radioactive neutron-rich germanium isotopes (78,80)Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains.
View Article and Find Full Text PDFPhys Rev Lett
October 2003
Evaporation residue cross sections have been measured with neutron-rich radioactive 132Sn beams on 64Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2 x 10(4) particles per second and the smallest cross section measured was less than 5 mb. Large sub-barrier fusion enhancement was observed.
View Article and Find Full Text PDFFive prompt proton decay lines have been identified between deformed states in (59)Cu and three spherical states in (58)Ni by means of high-resolution in-beam particle-gamma gamma coincidence spectroscopy. The GAMMASPHERE array coupled to dedicated ancillary detectors including four Delta E-E silicon strip detectors was used to study high-spin states in (59)Cu. The multiple discrete proton lines are found to probe the wave functions of states in the decay-out regime of well- and superdeformed states.
View Article and Find Full Text PDFThe B(E2;0(+)-->2+) values for the first 2+ excited states of neutron-rich 132,134,136Te have been measured using Coulomb excitation of radioactive ion beams. The B(E2) values obtained for 132,134Te are in excellent agreement with expectations based on the systematics of heavy stable Te isotopes, while that for 136Te is unexpectedly small. These results are discussed in terms of proton-neutron configuration mixing and shell-model calculations using realistic effective interactions.
View Article and Find Full Text PDFA rotational band with seven gamma-ray transitions between states with spin 2 Planck's constant and 16 Planck's constant has been observed in the doubly magic, self-conjugate nucleus (40)(20)Ca(20). The measured transition quadrupole moment of 1.80(+0.
View Article and Find Full Text PDFRadioactive ion beams of 17F were used to study several resonance states in 18Ne. Clear evidence for simultaneous two-proton emission from the 6.15 MeV state (Jpi = 1(-)) in 18Ne has been observed with the reaction 17F+1H.
View Article and Find Full Text PDF