New plant peroxidase has been isolated to homogeneity from the white Spanish broom Cytisus multiflorus. The enzyme purification steps included homogenization, NH(4)SO(4) precipitation, extraction of broom colored compounds and consecutive chromatography on Phenyl-Sepharose, HiTrap™ SP HP and Superdex-75 and 200. The novel peroxidase was characterized as having a molecular weight of 50 ± 3 kDa.
View Article and Find Full Text PDFThe thermal stability of the matrix protein (M protein) of Newcastle disease virus (NDV) has been investigated using high-sensitivity differential scanning calorimetry (DSC) at pH 7.4. The thermal folding/unfolding of M protein at this pH value is a reversible process involving a highly cooperative transition between folded and unfolded monomers with a transition temperature (Tm) of 63 °C, an unfolding enthalpy, ΔH(Tm), of 340 kcal mol(-1), and the difference in heat capacity between the native and denatured states of the protein, ΔCp, of 5.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2011
Plant peroxidases are presently used extensively in a wide range of biotechnological applications owing to their high environmental and thermal stability. As part of efforts towards the discovery of appealing new biotechnological enzymes, the peroxidase from leaves of the palm tree Chamaerops excelsa (CEP) was extracted, purified and crystallized in its native form. An X-ray diffraction data set was collected at a synchrotron source and data analysis showed that the CEP crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 70.
View Article and Find Full Text PDFAdenylate kinase (AK) from the sulphate-reducing bacterium Desulfovibrio gigas (AK) has been characterized earlier as a Co(2+)/Zn(2+)-containing enzyme, which is an unusual characteristic for adenylate kinases from Gram-negative bacteria, in which these enzymes are normally devoid of metal ions. AK was overexpressed in E. coli and homogeneous Co(2+)-, Zn(2+)- and Fe(2+)-forms of the enzyme were obtained under in vivo conditions.
View Article and Find Full Text PDFThe structural stability of a peroxidase, a dimeric protein from palm tree Chamaerops excelsa leaves (CEP), has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism and steady-state tryptophan fluorescence at pH 3. The thermally induced denaturation of CEP at this pH value is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, leading to the conclusion that in solution CEP behaves as dimer, which undergoes thermal denaturation coupled with dissociation.
View Article and Find Full Text PDFInt J Biol Macromol
November 2006
The kinetics of the structural changes affecting cardosin A, a plant aspartic proteinase (AP) from Cynara cardunculus L., in the presence of a mixture of acetonitrile (AN) in water (W) was studied. Incubation of cardosin A with 10% (v/v) AN resulted in a gradual increase in protein helicity, accompanied by changes in the tertiary structure, seen by changes in the intrinsic fluorescence of tryptophan.
View Article and Find Full Text PDFA novel adenylate kinase (AK) has recently been purified from Desulfovibrio gigas and characterized as a Co(2+)/Zn(2+)-containing enzyme: this is an unusual characteristic for AKs from Gram-negative bacteria, in which these enzymes are normally devoid of metals. Here, we studied the conformational stability of holo- and apo-AK as a function of temperature by differential scanning calorimetry (DSC), circular dichroism (CD), and intrinsic fluorescence spectroscopy. The thermal unfolding of AK is a cooperative two-state process, and is sufficiently reversible in the 9-11 pH range, that can be correctly interpreted in terms of a simple two-state thermodynamic model.
View Article and Find Full Text PDFThe thermal stability of peroxidase from leaves of the African oil palm tree Elaeis guineensis (AOPTP) at pH 3.0 was studied by differential scanning calorimetry (DSC), intrinsic fluorescence, CD and enzymatic assays. The spectral parameters as monitored by ellipticity changes in the far-UV CD spectrum of the enzyme as well as the increase in tryptophan intensity emission upon heating, together with changes in enzymatic activity with temperature were seen to be good complements to the highly sensitive but integral method of DSC.
View Article and Find Full Text PDF