Background: In clinical practice, various methods are used to identify gene rearrangements in tumor samples, ranging from "classic" techniques, such as IHC, FISH, and RT-qPCR, to more advanced highly multiplexed approaches, such as NanoString technology and NGS panels. Each of these methods has its own advantages and disadvantages, but they share the drawback of detecting only a restricted (although sometimes quite extensive) set of preselected biomarkers. At the same time, whole transcriptome sequencing (WTS, RNAseq) can, in principle, be used to detect gene fusions while simultaneously analyzing an incomparably wide range of tumor characteristics.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is the most aggressive and lethal central nervous system (CNS) tumor. The treatment strategy is mainly surgery and/or radiation therapy, both combined with adjuvant temozolomide (TMZ) chemotherapy. Historically, methylation of gene promoter is used as the major biomarker predicting individual tumor response to TMZ.
View Article and Find Full Text PDFThe gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of expression where ∼27% of cancer samples did not express and the rest showed a bell-shaped distribution.
View Article and Find Full Text PDFIdentification of genes and molecular pathways with congruent profiles in the proteomic and transcriptomic datasets may result in the discovery of promising transcriptomic biomarkers that would be more relevant to phenotypic changes. In this study, we conducted comparative analysis of 943 paired RNA and proteomic profiles obtained for the same samples of seven human cancer types from The Cancer Genome Atlas (TCGA) and NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) [two major open human cancer proteomic and transcriptomic databases] that included 15,112 protein-coding genes and 1611 molecular pathways. Overall, our findings demonstrated statistically significant improvement of the congruence between RNA and proteomic profiles when performing analysis at the level of molecular pathways rather than at the level of individual gene products.
View Article and Find Full Text PDFLapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line.
View Article and Find Full Text PDFIndividual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and survival in comparison with the previous generation of molecular pathway biomarkers (3022 "classical" pathways) and with the RNA transcripts or proteomic profiles of individual genes, for 8141 and 1117 samples, respectively.
View Article and Find Full Text PDFThe evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements.
View Article and Find Full Text PDFRelapse of breast cancer is one of the key obstacles to successful treatment. Previously we have shown that low expression of and genes in breast cancer tissue corresponded to poor prognosis. participates directly in the elongation of polyunsaturated fatty acids (PUFAs) that are considered to play an important role in cancer cell metabolism.
View Article and Find Full Text PDFIn 2021, the fifth edition of the WHO classification of tumors of the central nervous system (WHO CNS5) was published. Molecular features of tumors were directly incorporated into the diagnostic decision tree, thus affecting both the typing and staging of the tumor. It has changed the traditional approach, based solely on histopathological classification.
View Article and Find Full Text PDFRemoval of heavy metal ions, in particular, divalent nickel ions from natural and wastewater, is of great importance for the environment. Nickel (II) ions are very toxic and provoke many diseases. The purpose of this work was to study the possibility of removing toxic nickel (II) ions from polluted water using an iron (III) chloride (FeCl3) coagulant.
View Article and Find Full Text PDFViscumin, a lectin used in anti-cancer therapy, was originally considered as βGal recognizing protein; later, an ability to bind 6'-sialyl N-acetyllactosamine (6'SLN) terminated gangliosides was found. Here we probed viscumin with a printed glycan array (PGA) containing a large number of mammalian sulfated glycans, and found a strong binding to glycans with 6-O-SuGal moiety as lactose, N-acetyllactosamine (LN), di-N-acetyllactosamine (LacdiNAc), and even 6-O-SuGalNAcα (but not SiaTn). Also, the ability to bind some of αGal terminated glycans, including Galα1-3Galβ1-4GlcNAc, was observed.
View Article and Find Full Text PDFPreviously, we have shown that the aggregation of RNA-level gene expression profiles into quantitative molecular pathway activation metrics results in lesser batch effects and better agreement between different experimental platforms. Here, we investigate whether pathway level of data analysis provides any advantage when comparing transcriptomic and proteomic data. We compare the paired proteomic and transcriptomic gene expression and pathway activation profiles obtained for the same human cancer biosamples in The Cancer Genome Atlas (TCGA) and the NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) projects, for a total of 755 samples of glioblastoma, breast, liver, lung, ovarian, pancreatic, and uterine cancers.
View Article and Find Full Text PDFStructurally similar catalytic subunits A of ricin (RTA) and viscumin (MLA) exhibit cytotoxic activity through ribosome inactivation. Ricin is more cytotoxic than viscumin, although the molecular mechanisms behind this difference are still poorly understood. To shed more light on this problem, we used a combined biochemical/molecular modeling approach to assess possible relationships between the activity of toxins and their structural/dynamic properties.
View Article and Find Full Text PDFBreast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of and genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of and genes.
View Article and Find Full Text PDFDNA repair can prevent mutations and cancer development, but it can also restore damaged tumor cells after chemo and radiation therapy. We performed RNA sequencing on 95 human pathological thyroid biosamples including 17 follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papillary cancers and 1 poorly differentiated cancer. The gene expression profiles are annotated here with the clinical and histological diagnoses and, for papillary cancers, with gene V600E mutation status.
View Article and Find Full Text PDFAbout 5-10% of malignant neoplasms (MN) are hereditary. Carriers of mutations associated with hereditary tumor syndromes (HTS) are at high risk of developing tumors in childhood and young age and synchronous and metachronous multiple tumors. At the same time, this group of diseases remains mainly an oncological problem, and clinical decisions are made only when MNs are detected in carriers of pathogenic mutations.
View Article and Find Full Text PDFIn contrast to traditional 2D cell cultures, both 3D models and organ-on-a-chip devices allow the study of the physiological responses of human cells. These models reconstruct human tissues in conditions closely resembling the body. Translation of these techniques into practice is hindered by associated labor costs, a need which may be remedied by automation.
View Article and Find Full Text PDFHow is a water-soluble globular protein able to spontaneously cross a cellular membrane? It is commonly accepted that it undergoes significant structural rearrangements on the lipid-water interface, thus acquiring membrane binding and penetration ability. In this study molecular dynamics (MD) simulations have been used to explore large-scale conformational changes of the globular viscumin A chain in a complex environment - comprising urea and chloroform/methanol (CHCl/MeOH) mixture. Being well-packed in aqueous solution, viscumin A undergoes global structural rearrangements in both organic media.
View Article and Find Full Text PDFCovalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.
View Article and Find Full Text PDFFew-layer graphene/TiO2 nanocrystal composites are successfully in situ synthesized at a low temperature of 400 °C using C28H16Br2 as the precursor. Raman mapping images show that the TiO2 nanocrystals are very uniformly dispersed in the composite films, and the in situ coating during the thermal decomposition process will favor the formation of a good interface combination between the few-layered graphene and the TiO2 nanocrystals. The few-layer graphene/TiO2 nanocrystal composites are used as photoanodes in dye-sensitized solar cells (DSSCs), and the conversion efficiency of 8.
View Article and Find Full Text PDF