Due to the extensive oil extraction and transportation that occurs in oil-producing countries, many lands remain contaminated because of accidental leakages. Despite its low cost and environmentally safe nature, bioremediation technology is not always successful, mainly because of the soil toxicity to the degrading microbial populations and plants. Here we report a three-year microfield experiment on the influence of natural sorbents of mineral (zeolite, kaolinite, vermiculite, diatomite), organic (peat), carbonaceous (biochar) origin, and a mixed sorbent ACD (composed of granular activated carbon and diatomite) on the bioremediation of grey forest soil contaminated with weathered crude oil (40.
View Article and Find Full Text PDFThe increasing antibiotic resistance genes (ARGs) in fertilizer-amended soils can potentially enter food chains through their transfer in a soil-vegetable system, thus, posing threats to human health. As nitrogen is an essential nutrient in agricultural production, the effect of nitrogen (in the forms NH -N and NO -N) on the distribution of ARGs (, , and ) and a mobile genetic element (MGE; ) in a soil-Chinese cabbage system was investigated. Not all the tested genes could transfer from soil to vegetable.
View Article and Find Full Text PDFManganese oxides (Mn oxides) are ubiquitous and may coexist with Fe(III) ions in soil environments. In this study, acid birnessite, alkaline birnessite, cryptomelane, pyrolusite, manganite, and their Fe(III)-modified analogues were synthesized and used for benzo(a)pyrene transformation. Fe-modified Mn oxides show a markedly enhanced transformation capability towards benzo(a)pyrene.
View Article and Find Full Text PDFThe effectiveness of different bioremediation methods (biostimulation, bioaugmentation, the sorption-biological method) for the restoration of soil contaminated with petroleum products in the Russian Subarctic has been studied. The object of the study includes soil contaminated for 20 years with petroleum products. By laboratory experiment, we established five types of microfungi that most intensively decompose petroleum hydrocarbons: st.
View Article and Find Full Text PDFBenzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon, highly persistent and toxic and a widespread environmental pollutant. Although various technologies have been developed to remove BaP from the environment, its sorption through solid matrixes has received increasing attention due to cost-effectiveness. The present research compares the adsorption capacity of Haplic Chernozem, granular activated carbon and biochar in relation to BaP from water solution.
View Article and Find Full Text PDFEnviron Geochem Health
February 2022
Phyto- and bioremediation are perspective methods for soil recultivation. In spite of resistance of plant-hyperaccumulators and degrading microorganisms to some contaminants, there are soil toxicity limits for their growth and activity. Therefore, simple and express methods are needed to estimate the soil phytotoxicity.
View Article and Find Full Text PDFDue to the extended oil extraction and transportation in Russia and other oil-producing countries, many lands remain contaminated because of accidental spills. This situation requires the cost-effective and efficient remediation of petroleum-contaminated soils. Bioremediation of soils contaminated with high concentrations of crude oil is usually hampered by high toxicity thresholds for microbial degraders.
View Article and Find Full Text PDFThe involvement of benzo[a]pyrene (BaP) one of the most toxic polycyclic aromatic hydrocarbons (PAHs) in the soil-plant system causes its potential carcinogenicity and mutagenicity for human health. The aim of this article is benzo[a]pyrene (BaP) degradation and bioaccumulation in soil-plant system under artificial contamination in model experiment with Haplic Chernozem and that spiked with various doses of BaP (20, 200, 400 and 800μgkg) equivalent to 1, 10, 20 and 40 levels of maximal permissible concentrations (MPC) planted with spring barley (Hordeum sativum distichum). The experimental soil samples were planted every spring and incubated outdoor during 4years.
View Article and Find Full Text PDFThe acute effects of three typical polyaromatic hydrocarbons (PAHs): naphthalene (Naph), phenanthrene (Phen) and fluoranthene (Flu) on photochemical activity of photosystem II (PSII) in detached leaves of 3-week-old pea plants were studied. The leaves were exposed in water with PAHs under white light for 0.5-72 h.
View Article and Find Full Text PDFAim: To develop an integrated approach for monitoring gastrointestinal motility and inflammation state suitable for application in long-term spaceflights.
Methods: Breath tests based on the oral administration of ¹³C-labeled or hydrogen-producing substrates followed by the detection of their metabolites (¹³CO₂ or H₂) in breath were used to measure gastrointestinal motility parameters during the 520-d spaceflight ground simulation within the MARS-500 Project. In particular, the gastric emptying rates of solid and liquid contents were evaluated by ¹³C-octanoic acid and ¹³C-acetate breath tests, respectively, whereas the orocecal transit time was assessed by an inulin H₂-breath test, which was performed simultaneously with the ¹³C-octanoic acid breath test.
Activated carbon (AC) can help overcome toxicity of pollutants to microbes and facilitate soil bioremediation. We used this approach to treat a Histosol and an Alluvial soil historically contaminated with PCB (4190 and 1585 mg kg(-1), respectively; primarily tri-, tetra- and pentachlorinated congeners). Results confirmed PCB persistence; reductions in PCB extractable from control and AC-amended soils were mostly due to a decrease in tri- and to some extent tetrachlorinated congeners as well as formation of a bound fraction.
View Article and Find Full Text PDFSuccessful microbial-mediated remediation requires transformation pathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L(-1) in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate 2-hydroxylamino-4,6-dinitrotoluene (2HADNT).
View Article and Find Full Text PDF