The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22).
View Article and Find Full Text PDFEbola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015).
View Article and Find Full Text PDFLancet Infect Dis
December 2023
Background: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available.
View Article and Find Full Text PDFLancet
January 2023
Background: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults.
Methods: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA.
Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ).
View Article and Find Full Text PDFLancet Respir Med
October 2021
Background: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine.
View Article and Find Full Text PDFBackground: Seasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response.
Methods: Between August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age.
Technologies that define the atomic-level structure of neutralization-sensitive epitopes on viral surface proteins are transforming vaccinology and guiding new vaccine development approaches. Previously, iterative rounds of protein engineering were performed to preserve the prefusion conformation of the respiratory syncytial virus (RSV) fusion (F) glycoprotein, resulting in a stabilized subunit vaccine candidate (DS-Cav1), which showed promising results in mice and macaques. Here, phase I human immunogenicity data reveal a more than 10-fold boost in neutralizing activity in serum from antibodies targeting prefusion-specific surfaces of RSV F.
View Article and Find Full Text PDFBackground: Children are susceptible to severe influenza infections and facilitate community transmission. One potential strategy to improve vaccine immunogenicity in children against seasonal influenza involves a trivalent hemagglutinin DNA prime-trivalent inactivated influenza vaccine (IIV3) boost regimen.
Methods: Sites enrolled adolescents, followed by younger children, to receive DNA prime (1 mg or 4 mg) intramuscularly by needle-free jet injector (Biojector), followed by split virus 2012/13 seasonal IIV3 boost by needle and syringe approximately 18 weeks later.
A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen.
View Article and Find Full Text PDFBackground: The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.
Methods: Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65) or phosphate buffered saline (PBS) (n=66) administered intramuscularly with Biojector.
Background: A novel, swine-origin influenza A (H1N1) virus was detected worldwide in April 2009, and the World Health Organization (WHO) declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1) influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1) licensed monovalent inactivated vaccine (MIV).
View Article and Find Full Text PDFBackground: We hypothesized that lymph nodes draining sites of cutaneous vaccination could be identified by sentinel node biopsy techniques, and that measuring T-cell response with lymphocytes obtained from these lymph nodes would provide a more sensitive measure of immunogenicity than would the same measurement made with peripheral blood lymphocytes (PBL).
Methods: ELISpot analysis was used to determine the magnitude of vaccine-specific T-cell response in the sentinel immunized nodes (SIN), random lymph nodes, and peripheral blood lymphocytes (PBL) obtained from patients enrolled in clinical trials of experimental melanoma vaccines.
Results: The SIN biopsy was successful in 97% of cases and morbidity was very low.
Purpose: Human melanoma cells express shared antigens recognized by CD8(+) T lymphocytes, the most common of which are melanocytic differentiation proteins and cancer-testis antigens. However, peptide vaccines for melanoma usually target only one or two MHC class I-associated peptide antigens. Because melanomas commonly evade immune recognition by selective antigen loss, optimization of melanoma vaccines may require development of more complex multipeptide vaccines.
View Article and Find Full Text PDFThe major histocompatibility complex class I molecules consist of three subunits, the 45-kDa heavy chain, the 12-kDa beta(2)-microglobulin (beta(2)m), and an approximately 8-9-residue antigenic peptide. Without beta(2)m, the major histocompatibility complex class I molecules cannot assemble, thereby abolishing their transport to the cell membrane and the subsequent recognition by antigen-specific T cells. Here we report a case of defective antigen presentation caused by the expression of a beta(2)m with a Cys-to-Trp substitution at position 25 (beta(2)m(C25W)).
View Article and Find Full Text PDFImmune-mediated control of tumors may occur, in part, through lysis of malignant cells by CD8(+) T cells that recognize specific Ag-HLA class I complexes. However, tumor cell populations may escape T cell responses by immune editing, by preventing formation of those Ag-HLA complexes. It remains unclear whether the human immune system can respond to immune editing and recognize newly arising escape variants.
View Article and Find Full Text PDFPurpose: To assess changes in serum cytokine levels in patients treated concomitantly with or without systemic low-dose IL-2. Vaccination targeted CTL responses to peptide antigens, and IL-2 was coadministered to expand activated CTL. Paradoxically, CTL responses were diminished in patients after 2 weeks of IL-2.
View Article and Find Full Text PDFPurpose: A phase II trial was performed to test whether systemic low-dose interleukin-2 (IL-2) augments T-cell immune responses to a multipeptide melanoma vaccine. Forty patients with resected stage IIB-IV melanoma were randomly assigned to vaccination with four gp100- and tyrosinase-derived peptides restricted by human leukocyte antigen (HLA) -A1, HLA-A2, and HLA-A3, and a tetanus helper peptide plus IL-2 administered daily either beginning day 7 (group 1), or beginning day 28 (group 2).
Patients And Methods: T-cell responses were assessed by an interferon gamma ELIspot assay in peripheral blood lymphocytes (PBL) and in a lymph node draining a vaccination site (sentinel immunized node [SIN]).
Purpose: To determine clinical and immunologic responses to a multipeptide melanoma vaccine regimen, a randomized phase II trial was performed.
Patients And Methods: Twenty-six patients with advanced melanoma were randomly assigned to vaccination with a mixture of four gp100 and tyrosinase peptides restricted by HLA-A1, HLA-A2, and HLA-A3, plus a tetanus helper peptide, either in an emulsion with granulocyte-macrophage colony-stimulating factor (GM-CSF) and Montanide ISA-51 adjuvant (Seppic Inc, Fairfield, NJ), or pulsed on monocyte-derived dendritic cells (DCs). Systemic low-dose interleukin-2 (Chiron, Emeryville, CA) was given to both groups.