In this work, the electrooxidation as environmentally clean technology has been studied to the degradation of Mordant Blue 13 azo dye (MB13) using boron-doped diamond (p-Si/BDD) and oxide ruthenium titanium (Ti/RuTiO (DSA)) anodes in various water matrices: distilled water (DW), hot tap water (HTW), and simulated wastewaters with (SWS) and without surfactant (SW). The influence of experimental parameters, such as current density, initial dye concentration, electrolysis time/specific charge, and pH on the MB13 degradation rate, current efficiency, and energy consumption, has been determined. The enhanced rate of both color and chemical oxygen demand (COD) removal in sulfate aqueous solutions with BDD was observed, which indicates that sulfate (SO) radicals along with OH ones might be responsible for the degradation process.
View Article and Find Full Text PDF