DFT calculations of the mononuclear Fe(II) spin crossover complexes [Fe(L)](2+) (L = ({bis[N-(2-pyridylmethyl)-3-aminopropyl](2-pyridylmethyl)amine})), ({[N-(2-pyridylmethyl)-3-aminopropyl][N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}) and ({bis[N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}) abbreviated as (66), (56) and (55) have been performed in order to explain the observed spin transition temperature differences. The complexes differ in the size of two chelate rings, revealing two six-membered, one six-membered and one five-membered, and two five membered rings for (66), (56) and (55), respectively. Calculations of the electronic energy differences ΔEel = Eel(HS) - Eel(LS) with the use of the basis set TZVP with B3LYP*, PBE, TPSS and TPSSh functionals reproduced the experimentally observed trends.
View Article and Find Full Text PDFTwo polymorphic modifications 1 and 3 of binuclear compound [{Fe(dpia)(NCS)(2)}(2)(bpe)] and pseudo-polymorphic modification [{Fe(dpia)(NCS)(2)}(2)(bpe)]·2CH(3)OH (2), where dpia = di-(2-picolyl)amine, bpe = 1,2-bis(4-pyridyl)ethene, were synthesized, and their structures, magnetic properties, and Mössbauer spectra were studied. Variable-temperature magnetic susceptibility measurements of three binuclear compounds show different types of magnetic behaviour. The complex 1 exhibits a gradual two-step spin crossover (SCO) suggesting the occurrence of the mixed [HS-LS] (HS: high spin, LS: low spin) pair at the plateau temperature (182 K), at which about 50% of the complexes undergoes a thermal spin conversion.
View Article and Find Full Text PDFChemistry
October 2009
This paper reports the synthesis of a family of mononuclear complexes [Fe(L)]X(2) (X=BF(4), PF(6), ClO(4)) with hexadentate ligands L=Hpy-DAPP ({bis[N-(2-pyridylmethyl)-3-aminopropyl](2-pyridylmethyl)amine}), Hpy-EPPA ({[N-(2-pyridylmethyl)-3-aminopropyl][N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}) and Hpy-DEPA ({bis[N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}). The systematic change of the length of amino-aliphatic chains in these ligands results in chelate rings of different size: two six-membered rings for Hpy-DAPP, one five- and one six-membered rings for Hpy-EPPA, and two five-membered rings for Hpy-DEPA. The X-ray analysis of three low-spin complexes [Fe(L)](BF(4))(2) revealed similarities in their molecular and crystal structures.
View Article and Find Full Text PDFWe report here on the synthesis and characterisation of a first iron(II) spin-crossover coordination polymer with the dca spacer ligand, having the formula [Fe(aqin)2(dca)]ClO4.MeOH (aqin=8-aminoquinoline, dca=dicyanamide), which displays a two-step complete spin transition. Variable-temperature magnetic susceptibility measurements and Mössbauer spectroscopy have revealed that the two relatively gradual steps are centred at 215 and 186 K and are separated by an inflection point at about 201 K, at which 50 % of the complex molecules undergo a spin transition.
View Article and Find Full Text PDFThe spin crossover phenomenon of the recently described spin crossover complex [FeII(DAPP)(abpt)](ClO4)2 [DAPP = bis(3-aminopropyl)(2-pyridylmethyl)amine, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] accompanying an order-disorder phase transition of the ligand was investigated by adiabatic heat capacity calorimetry, far-IR, IR, and Raman spectroscopies, and normal vibrational mode calculation. A large heat capacity peak due to the spin crossover transition was observed at T(trs) = 185.61 K.
View Article and Find Full Text PDFThe paper reports the synthesis and detailed characterization of two new Fe(II) compounds: [Fe(pyim)(2)(bpen)](ClO(4))(2).2C(2)H(5)OH (2) and [Fe(pyim)(2)(bpe)](ClO(4))(2).C(2)H(5)OH (3) (pyim = 2-(2-pyridyl)imidazole, bpen = 1,2-bis(4-pyridyl)ethane, and bpe = 1,2-bis(4-pyridyl)ethene).
View Article and Find Full Text PDFThe calculations of the high spin (HS) and low spin (LS) states of the [Fe(II)(DPPA)(NCS)(2)] complex have been performed at three experimentally observed geometries corresponding to three synthesized polymorphs with different spin-transition behavior. The structure optimization leads to a single molecular structure, suggesting that the existence of three geometries is not an intrinsic phenomenon but is induced by the crystal lattice. The structural difference between three forms can be reproduced by introducing the Madelung field of the crystal lattice.
View Article and Find Full Text PDFThe synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and Mössbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures.
View Article and Find Full Text PDFThree polymorphic modifications A-C of [Fe(II)(DPPA)(NCS)(2)], where DPPA = (3-aminopropyl)bis(2-pyridylmethyl)amine is a new tetradentate ligand, have been synthesized, and their structures, magnetic properties, and Mössbauer spectra have been investigated. For polymorph A, variable-temperature magnetic susceptibility measurements as well as Mössbauer spectroscopy have revealed the occurrence of a rather gradual HS if LS transition without hysteresis, centered at about 176 K. The same methods have shown that polymorph B is paramagnetic over the temperature range 4.
View Article and Find Full Text PDFThe new spin transition compound [Fe(II)(DPEA)(NCS)(2)], where DPEA [(2-aminoethyl)bis(2-pyridylmethyl)amine] is a new tetradentate ligand, has been synthesized, and its structure, magnetic properties, and Mössbauer spectra have been investigated. The crystal structure has been determined by X-ray diffraction at 298 K. The compound crystallizes in the monoclinic system, space group is P2(1)/c, with Z = 4,a = 9.
View Article and Find Full Text PDF