The effect of water, methanol, and hexane vapors on gas permeability was studied in a hybrid membrane containing 5 wt% copolyimide brushes with poly(methyl methacrylate) side chains (PI-g-PMMA) in a poly(phenylene oxide) (PPO) matrix, and in a pristine PPO membrane. These membranes in the form of dense nonporous films were further examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), as well as by measuring their mechanical and gas transport properties. A gas separation study of the membranes in a dry state and the membranes saturated with water, methanol, and hexane vapors was performed to estimate the effect of each vapor on the H, CO, N permeability and selectivity in the separation of H/N and CO/N pairs.
View Article and Find Full Text PDFA novel hybrid membrane was developed on the basis of poly(-phenylene isophthalamide) (PA) by introducing an original complex modifier into the polymer; this modifier consisted of equal amounts of heteroarm star macromolecules with a fullerene C core (HSM) and the ionic liquid [BMIM][TfN] (IL). The effect of the (HSM:IL) complex modifier on characteristics of the PA membrane was evaluated using physical, mechanical, thermal, and gas separation techniques. The structure of the PA/(HSM:IL) membrane was studied by scanning electron microscopy (SEM).
View Article and Find Full Text PDFPoly(2,2'-biquinoline-6,6'-dicarbohydrazide)-co-(bistrimelliteimide)methylene-bisanthranylide (PHI) and its metal-polymer complex PHI-Cu(I) containing several types of functional groups (hydrazide, carboxyl, amide, and imide fragments) were synthesized to prepare two types of dense nonporous membranes. The study on morphology using scanning electron microscopy (SEM), measurements of mechanical, thermal, and transport properties of the membrane samples was carried out. The main mechanical properties of both membranes do not differ significantly, but the values of ultimate deformation differ palpably as a result of a non-uniform character of the deformation process for the PHI membrane.
View Article and Find Full Text PDFThis study aims to improve properties of Ultem polyetherimide (PEI) by incorporating up to 2 wt% additives of the perovskite oxide LaYbAlO (LYA). The structure of dense PEI/LYA films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with an analysis of their elemental composition using energy-dispersive spectroscopy (EDS). The PEI/LYA films exhibit a two-layer structure.
View Article and Find Full Text PDFIn this study, novel composites were produced by blending partially cyclized polyacrylonitrile (PAN) and poly(amide-imide) (PAI) in N-methylpyrrolidone in order to fabricate asymmetric membranes via phase inversion method. The compatibility of PAI and PAN through possible intermolecular interaction was examined by quantum chemical calculations. The composite membranes were characterized by FTIR, SEM, contact angle measurements, etc.
View Article and Find Full Text PDFUltrafiltration (UF) as a widely used industrial separation method with optimal selection of membrane materials can be applied to extract rare earth metals from dilute solutions formed during the processing of electronic waste by hydrometallurgical methods. In the present work, promising UF copolyimide membranes were prepared using [hmim][TCB] ionic liquid (IL) co-solvent which can be considered as an environmentally friendly alternative to conventional solvents. The membranes were characterized by ATR-FTIR, TGA, SEM and quantum chemical calculations.
View Article and Find Full Text PDFModification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix.
View Article and Find Full Text PDFHybrid membranes based on poly (2,6-dimethyl-1,4-phenylene oxide) modified with heteroarm stars (HAS) were developed to separate ethylene glycol/water mixtures by pervaporation. The HAS consist of a small branching center fullerene C 60 and twelve arms of different nature, six arms of nonpolar polystyrene and six arms of polar poly-tert-butyl methacrylate. The changes of structure and physical properties with HAS inclusion were systematically studied using SEM, X-ray diffraction analysis, TGA, and contact angle measurements.
View Article and Find Full Text PDFThe wide possibilities of designing a chemical structure and creating complexes with transition metals make polymers of heteroaromatic structure interesting objects, from both scientific and practical aspects. In this work, modern biquinoline-containing polymers, namely polyester amide (PEA) and its metal-polymer complex (PEA-Cu(I)), were synthesized and used to form dense flat membranes. A comparative study of their morphology, same physical properties (density, free volume, and contact angles), and thermomechanical characteristics was carried out.
View Article and Find Full Text PDFModern ultrafiltration requires novel perfect membranes with narrow pore size, high porosity, and minimal pore tortuosity to achieve high separation performance. In this work, copolyamic acid (co-PAA) was synthesized and used for the preparation of asymmetric porous membranes by phase inversion technique. Several co-PAA membranes were heated up to 250 °C; during heating, they undergo solid-phase transformation into co-polybenzoxazinoneimide (co-PBOI) via dehydration and cyclization.
View Article and Find Full Text PDFNovel polymer composite materials, including unique nanoparticles, contribute to the progress of modern technologies. In this work, the endohedral fullerene C with incapsulated iron atom (endometallofullerene Fe@C) is used for modification of P84 copolyimide. The impact of 0.
View Article and Find Full Text PDFMembrane gas separation is a prospective technology for hydrogen separation from various refinery and petrochemical process streams. To improve efficiency of gas separation, a novel hybrid membrane consisting of nanodiamonds and P84 copolyimide is developed. The particularities of the hybrid membrane structure, physicochemical, and gas transport properties were studied by comparison with that of pure P84 membrane.
View Article and Find Full Text PDFCopolyamides with anthrazoline units in the backbone (coPA) were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures.
View Article and Find Full Text PDF