Publications by authors named "Galina Korshunova"

Tissue specificity can render mitochondrial uncouplers more promising as leading compounds for creating drugs against serious diseases. In search of tissue-specific uncouplers, we address anilinothiophenes as possible glutathione-S-transferase substrates (GST). Earlier, 'cyclic' uncoupling activity was reported for 5-bromo-N-(4-chlorophenyl)-3,4-dinitro-2-thiophenamine (BDCT) in isolated rat liver mitochondria (RLM).

View Article and Find Full Text PDF

Mitochondrial uncoupling by small-molecule protonophores is generally accepted to proceed via transmembrane proton shuttling. The idea of facilitating this process by the adenine nucleotide translocase ANT originated primarily from the partial reversal of the DNP-induced mitochondrial uncoupling by the ANT inhibitor carboxyatractyloside (CATR). Recently, the sensitivity to CATR was also observed for the action of such potent OxPhos uncouplers as BAM15, SF6847, FCCP and niclosamide.

View Article and Find Full Text PDF

Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-di-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction.

View Article and Find Full Text PDF

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.

View Article and Find Full Text PDF

In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (CTPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of CTPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane.

View Article and Find Full Text PDF

The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier.

View Article and Find Full Text PDF

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C) by reaction of triphenylphosphine with decyl bromoacetate.

View Article and Find Full Text PDF

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length.

View Article and Find Full Text PDF

A great variety of coumarin-related compounds, both natural and synthetic, being often brightly fluorescent, have shown themselves beneficial in medicine for both therapeutic and imaging purposes. Here, in search for effective uncouplers of oxidative phosphorylation, we synthesized a series of 7-hydroxycoumarin (umbelliferone, UB) derivatives combining rather high membrane affinity with the presence of a hydroxyl group deprotonable at physiological pH - alkyl esters of umbelliferone-4-acetic acid (UB-4 esters) differing in alkyl chain length. Addition of UB-4 esters to isolated rat liver mitochondria (RLM) resulted in their rapid depolarization, unexpectedly followed by membrane potential recovery on a minute time scale.

View Article and Find Full Text PDF

The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc.

View Article and Find Full Text PDF

The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (CTPP-X) and measured electrical current through a planar lipid bilayer in the presence of CTPP-X.

View Article and Find Full Text PDF

The synthesis of a mitochondria-targeted derivative of the classical mitochondrial uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP) by alkoxy substitution of CCCP with n-decyl(triphenyl)phosphonium cation yielded mitoCCCP, which was able to inhibit the uncoupling action of CCCP, tyrphostin A9 and niclosamide on rat liver mitochondria, but not that of 2,4-dinitrophenol, at a concentration of 1-2 μM. MitoCCCP did not uncouple mitochondria by itself at these concentrations, although it exhibited uncoupling action at tens of micromolar concentrations. Thus, mitoCCCP appeared to be a more effective mitochondrial recoupler than 6-ketocholestanol.

View Article and Find Full Text PDF

To clarify the contribution of charge delocalization in a lipophilic ion to the efficacy of its permeation through a lipid membrane, we compared the behavior of alkyl derivatives of triphenylphosphonium, tricyclohexylphosphonium and trihexylphosphonium both in natural and artificial membranes. Exploring accumulation of the lipophilic cations in response to inside-negative membrane potential generation in mitochondria by using an ion-selective electrode revealed similar mitochondrial uptake of butyltricyclohexylphosphonium (CTCHP) and butyltriphenylphosphonium (CTPP). Fluorescence correlation spectroscopy also demonstrated similar membrane potential-dependent accumulation of fluorescein derivatives of tricyclohexyldecylphosphonium and decyltriphenylphosphonium in mitochondria.

View Article and Find Full Text PDF

Appending a lipophylic alkyl chain by ester bond to fluorescein has been previously shown to convert this popular dye into an effective protonophoric uncoupler of oxidative phosphorylation in mitochondria, exhibiting neuro- and nephroprotective effects in murine models. In line with this finding, we here report data on the pronounced depolarizing effect of a series of fluorescein decyl esters on bacterial cells. The binding of the fluorescein derivatives to cells was monitored by fluorescence microscopy and fluorescence correlation spectroscopy (FCS).

View Article and Find Full Text PDF

Sterols change the biophysical properties of lipid membranes. Here, we analyzed how sterols affect the activity of widely used antimicrobial membrane-active compounds, sodium dodecyl sulfate (SDS) and benzalkonium chloride (BAC). We also tested a novel benzalkonium-like substance, Kor105.

View Article and Find Full Text PDF

Penetrating cations are widely used for the design of bioactive mitochondria-targeted compounds. The introduction of various substituents into the phenyl rings of dodecyltriphenylphosphonium and the measurement of the flip-flop of the synthesized cations by the current relaxation method revealed that methyl groups accelerated significantly the cation penetration through the lipid membrane, depending on the number of groups introduced. However, halogenation slowed down the penetration of the analogues.

View Article and Find Full Text PDF

Voltage-dependent translocation of a series of cationic rhodamine B derivatives differing in n-alkyl chain length (ethyl, butyl, octyl, dodecyl, octadecyl) from one lipid monolayer to another was studied by measuring electrical current relaxation after a voltage jump on a planar bilayer phosphatidylcholine (PC) membrane. The rate of the translocation decreased in the following series of lipids: diphytanyl-PC > dioleyl-PC > diphytanoyl-PC > dierucoyl-PC. For all the lipids studied, the rate increased with lengthening of the hydrocarbon chain of the rhodamine derivatives, with the increase being most pronounced for the compounds having a short alkyl chain.

View Article and Find Full Text PDF

The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP.

View Article and Find Full Text PDF

Mitochondria-targeted antioxidants are known to alleviate mitochondrial oxidative damage that is associated with a variety of diseases. Here, we showed that SkQ1, a decyltriphenyl phosphonium cation conjugated to a quinone moiety, exhibited strong antibacterial activity towards Gram-positive Bacillus subtilis, Mycobacterium sp. and Staphylococcus aureus and Gram-negative Photobacterium phosphoreum and Rhodobacter sphaeroides in submicromolar and micromolar concentrations.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is one of the most widespread chronic neurological diseases that manifests itself by progressive demyelination in the central nervous system. The study of MS pathogenesis begins with the onset of the relapsing-remitting phase of the disease, which becomes apparent due to microglia activation, neuroinflammation and demyelination/ remyelination in the white matter. The following progressive phase is accompanied by severe neurological symptoms when demyelination and neurodegeneration are spread to both gray and white matter.

View Article and Find Full Text PDF

In search for new effective uncouplers of oxidative phosphorylation, we studied 4-aryl amino derivatives of a fluorescent group 7-nitrobenz-2-oxa-1,3-diazol (NBD). In our recent work (Denisov et al., Bioelectrochemistry, 2014), NBD-conjugated alkyl amines (NBD-C) were shown to exhibit uncoupling activity.

View Article and Find Full Text PDF

In 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6'-plastoquinonyl)decylrhodamine], have a neuroprotective action.

View Article and Find Full Text PDF

Background: Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. Linking a triphenyl-phosphonium cation to fluorescein through a decyl (C10) spacer yields a fluorescent uncoupler, coined mitoFluo, that selectively accumulates in energized mitochondria (Denisov et al., Chem.

View Article and Find Full Text PDF

We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium. Neuroprotective properties were evaluated in a model of middle cerebral artery occlusion.

View Article and Find Full Text PDF

This study assesses a protective effect of a mitochondria-targeted antioxidant SkQT1 (a mixture of 10-(6'-toluquinonyl) decyltriphenylphosphonium and 10-(5'-toluquinonyl) decyltriphenylphosphonium in proportion of 1.4:1), using an open focal trauma model of the rat brain sensorimotor cortex and a model of amyloid-beta1-42 (Abeta)-induced impairment of hippocampal long-term potentiation (LTP), a kind of synaptic plasticity associated with learning and memory. It was found that a trauma-induced neurological deficit could be partially improved with daily intraperitoneal injections of SkQT1 (250 nmol/kg) for 5 days after the trauma.

View Article and Find Full Text PDF