The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Pediatric dilated cardiomyopathy (DCM) is a rare heart muscle disorder leading to the enlargement of all chambers and systolic dysfunction. We identified a novel de novo variant, c.88A>G (p.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2).
View Article and Find Full Text PDFThe actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm).
View Article and Find Full Text PDFCardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied.
View Article and Find Full Text PDFTropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and β, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γβ-heterodimers, or ββ-homodimers, and a majority of the molecules are present as γβ-Tpm heterodimers.
View Article and Find Full Text PDFIntroduction: The left and right atria (LA, RA) work under different mechanical and metabolic environments that may cause an intrinsic inter-chamber diversity in structure and functional properties between atrial cardiomyocytes (CM) in norm and provoke their different responsiveness to pathological conditions. In this study, we assessed a LA vs. RA difference in CM contractility in paroxysmal atrial fibrillation (AF) and underlying mechanisms.
View Article and Find Full Text PDFWe characterized a novel genetic variant c.292G > A (p.E98K) in the gene encoding cardiac tropomyosin 1.
View Article and Find Full Text PDFIn the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2).
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM), caused by mutations in thin filament proteins, manifests as moderate cardiac hypertrophy and is associated with sudden cardiac death (SCD). We identified a new de novo variant, c.656A>T (p.
View Article and Find Full Text PDFTropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R.
View Article and Find Full Text PDFThe effects of cardiomyopathic mutations E56G, M149V, and E177G in the MYL3 gene encoding essential light chain of human ventricular myosin (ELCv), on the functional properties of cardiac myosin and its isolated head (myosin subfragment 1, S1) were investigated. Only the M149V mutation upregulated the actin-activated ATPase activity of S1. All mutations significantly increased the Ca2+-sensitivity of the sliding velocity of thin filaments on the surface with immobilized myosin in the in vitro motility assay, while mutations E56G and M149V (but not E177G) reduced the sliding velocity of regulated thin filaments and F-actin filaments almost twice.
View Article and Find Full Text PDFThe work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied.
View Article and Find Full Text PDFLeptin is a pleiotropic peptide playing an important role in the regulation of cardiac functions. It is not clear whether leptin directly modulates the mechanical function of atrial cardiomyocytes. We compared the acute effects of leptin on the characteristics of mechanically non-loaded sarcomere shortening and cytosolic Ca concentration ([Ca]) transients in single rat atrial and ventricular cardiomyocytes.
View Article and Find Full Text PDFType 1 diabetes (T1D) leads to ischemic heart disease and diabetic cardiomyopathy. We tested the hypothesis that T1D differently affects the contractile function of the left and right ventricular free walls (LV, RV) and the interventricular septum (IS) using a rat model of alloxan-induced T1D. Single-myocyte mechanics and cytosolic Ca concentration transients were studied on cardiomyocytes (CM) from LV, RV, and IS in the absence and presence of mechanical load.
View Article and Find Full Text PDFThe molecular mechanisms of pathogenesis of atrial myopathy associated with hypertrophic (HCM) and dilated (DCM) mutations of sarcomeric proteins are still poorly understood. For this, one needs to investigate the effects of the mutations on actin-myosin interaction in the atria separately from ventricles. We compared the impact of the HCM and DCM mutations of tropomyosin (Tpm) on the calcium regulation of the thin filament interaction with atrial and ventricular myosin using an in vitro motility assay.
View Article and Find Full Text PDFEstrogen deficiency has a significant influence on the excitation-contraction coupling in the ventricular myocardium but its impact on the atrial contractile function has not been studied. We have compared the effects of estrogen deficiency on the contractility and cytosolic Ca transient of single cardiomyocytes isolated from the left atrium (LA) and the left ventricle (LV) of rats subjected to ovariectomy (OVX) or sham surgery (Sham). The characteristics of actin-myosin interaction were studied in an in vitro motility assay.
View Article and Find Full Text PDFPhosphorylation of α-tropomyosin (Tpm1.1), a predominant Tpm isoform in the myocardium, is one of the regulatory mechanisms of the heart contractility. The Tpm 1.
View Article and Find Full Text PDFTropomyosin (Tpm) is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Numerous point mutations in the TPM3 gene encoding Tpm of slow skeletal muscles (Tpm 3.12 or γ-Tpm) are associated with the genesis of various congenital myopathies.
View Article and Find Full Text PDFTropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions.
View Article and Find Full Text PDFSeveral congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.
View Article and Find Full Text PDFOmecamtiv mecarbil (OM), an activator of cardiac myosin, strongly affects contractile characteristics of the ventricles and, to a much lesser extent, the characteristics of atrial contraction. We compared the molecular mechanism of action of OM on the interaction of atrial and ventricular myosin with actin using an optical trap and an in vitro motility assay. In concentrations up to 0.
View Article and Find Full Text PDFTropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein playing an essential role in the regulation of muscle contraction. The α- (Tpm 1.1) and γ- (Tpm 3.
View Article and Find Full Text PDFIn the heart, mutations in the TPM1 gene encoding the α-isoform of tropomyosin lead, in particular, to the development of hypertrophic and dilated cardiomyopathies. We compared the effects of hypertrophic, D175N and E180G, and dilated, E40K and E54K, cardiomyopathy mutations in TPM1 gene on the properties of single actin-myosin interactions and the characteristics of the calcium regulation in an ensemble of myosin molecules immobilised on a glass surface and interacting with regulated thin filaments. Previously, we showed that at saturating Ca concentration the presence of Tpm on the actin filament increases the duration of the interaction.
View Article and Find Full Text PDF