Publications by authors named "Galina Ermakova"

The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years.

View Article and Find Full Text PDF

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. , and of lampreys, like and of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in embryos.

View Article and Find Full Text PDF

Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically.

View Article and Find Full Text PDF

is a key regulator of the early development of the vertebrate forebrain and sensory organs. In this study, we describe for the first time three paralogues in lamprey, representative of one of two basally diverged lineages of vertebrates-the agnathans. We also first describe three genes in sterlet-representative of one of the evolutionarily ancient clades of gnathostomes.

View Article and Find Full Text PDF

The secreted protein Noggin1 was the first discovered natural embryonic inducer produced by cells of the Spemann organizer. Thereafter, it was shown that vertebrates have a whole family of Noggin genes with different expression patterns and functional properties. For example, Noggin1 and Noggin2 inhibit the activity of BMP, Nodal/Activin and Wnt-beta-catenin signalling, while Noggin4 cannot suppress BMP but specifically modulates Wnt signalling.

View Article and Find Full Text PDF

FoxG1, a member of the Fox/Forkhead family of winged helix transcription factors, plays key roles in the induction and spatial compartmentalization of the telencephalon in vertebrates. Loss- and gain-of-function experiments have established FoxG1 as a maintenance factor for neural progenitors and a crucial player in the specification of the ventral telencephalon (subpallium). For the first time in evolution, the telencephalon appeared in the ancestors of vertebrates, including cyclostomes.

View Article and Find Full Text PDF

In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes.

View Article and Find Full Text PDF

Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates' ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates.

View Article and Find Full Text PDF

Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins.

View Article and Find Full Text PDF

Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size.

View Article and Find Full Text PDF

Background: SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use.

Methods: Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer.

View Article and Find Full Text PDF

Agr family includes three groups of genes, Ag1, Agr2 and Agr3, which encode the thioredoxin domain-containing secreted proteins and have been shown recently to participate in regeneration of the amputated body appendages in amphibians. By contrast, higher vertebrates have only Agr2 and Agr3, but lack Ag1, and have low ability to regenerate the body appendages. Thus, one may hypothesize that loss of Ag1 in evolution could be an important event that led to a decline of the regenerative capacity in higher vertebrates.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation.

View Article and Find Full Text PDF

We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer.

View Article and Find Full Text PDF

Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1.

View Article and Find Full Text PDF

Previous studies have shown that Agr genes, which encode thioredoxin domain-containing secreted proteins, play a critical role in limb regeneration in salamanders. To determine the evolutionary conservation of Agr function, it is important to examine whether Agrs play a similar role in species with a different type of regeneration. Here, we refined the phylogeny of Agrs, revealing three subfamilies: Ag1, Agr2 and Agr3.

View Article and Find Full Text PDF

The secreted protein Noggin1 is an embryonic inducer that can sequester TGFβ cytokines of the BMP family with extremely high affinity. Owing to this function, ectopic Noggin1 can induce formation of the headless secondary body axis in Xenopus embryos. Here, we show that Noggin1 and its homolog Noggin2 can also bind, albeit less effectively, to ActivinB, Nodal/Xnrs and XWnt8, inactivation of which, together with BMP, is essential for the head induction.

View Article and Find Full Text PDF

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination.

View Article and Find Full Text PDF

A vast colour palette of monomeric fluorescent proteins has been developed to investigate protein localization, motility and interactions. However, low brightness has remained a problem in far-red variants, which hampers multicolour labelling and whole-body imaging techniques. In the present paper, we report mKate2, a monomeric far-red fluorescent protein that is almost 3-fold brighter than the previously reported mKate and is 10-fold brighter than mPlum.

View Article and Find Full Text PDF

The question of how subdivision of embryo into cell territories acquiring different fates is coordinated with morphogenetic movements shaping the embryonic body still remains poorly resolved. In the present report, we demonstrate that a key regulator of anterior neural plate patterning, the homeodomain transcriptional repressor Xanf1/Hesx1, can bind to the LIM-domain protein Zyxin, which is known to regulate cell morphogenetic movements via influence on actin cytoskeleton dynamics. Using a set of deletion mutants, we found that the Engrailed-type repressor domain of Xanf1 and LIM2-domain of Zyxin are primarily responsible for interaction of these proteins.

View Article and Find Full Text PDF

For deep imaging of animal tissues, the optical window favorable for light penetration is in near-infrared wavelengths, which requires proteins with emission spectra in the far-red wavelengths. Here we report a far-red fluorescent protein, named Katushka, which is seven- to tenfold brighter compared to the spectrally close HcRed or mPlum, and is characterized by fast maturation as well as a high pH-stability and photostability. These unique characteristics make Katushka the protein of choice for visualization in living tissues.

View Article and Find Full Text PDF

Early development of the rostral forebrain (RF) in vertebrates is accompanied by the inhibition of two homeobox regulators, Otx2 and Pax6 in the rostral sector of the anterior neural plate, further giving rise to the RF. However, the precise molecular mechanism and meaning of this inhibition is still obscure. We now demonstrate that the activity of the Anf homeodomain protein is necessary and sufficient for the anterior inhibition of Otx2 and Pax6.

View Article and Find Full Text PDF

Noggin is a neural inducer secreted by cells of the Spemann organizer. A single noggin gene was identified until very recently in all tested vertebrates. The only exception was zebrafish, in which two close homologs of noggin, named noggin1 and noggin3, and one gene more diverged from them, noggin2, were cloned.

View Article and Find Full Text PDF

Expression of the homeobox gene Xanf-1 starts within the presumptive forebrain primordium of the Xenopus embryo at the midgastrula stage and is inhibited by the late neurula. Such stage-specific inhibition is essential for the normal development as the experimental prolongation of the Xanf-1 expression elicits severe brain abnormalities. To identify transcriptional regulators that are responsible for the Xanf-1 inhibition, we have used the yeast one-hybrid system and identified a novel Xenopus homeobox gene X-nkx-5.

View Article and Find Full Text PDF