Publications by authors named "Galina A Pavlova"

Mammalian oviducts contain smooth muscles and inward-facing ciliated epithelium. Muscular contractions, not ciliary beating, propel oocytes through the oviduct towards the uterus. In crawling gastropods (unique models for studying the functioning of phasic smooth muscles), muscular contractions, propagating along the foot sole, play a principal role in determining the crawling rate.

View Article and Find Full Text PDF
The similarity of crawling mechanisms in aquatic and terrestrial gastropods.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

February 2019

Crawling gastropods are unique models for studying the functioning of smooth muscles and ciliated epithelia, since they cover the foot sole and are involved in locomotion, allowing for direct investigation. Two types of crawling are known: creeping by muscular waves in terrestrial gastropods such as Helix and сiliary gliding in aquatic gastropods such as Lymnaea. It was found that the smooth muscles that underlie the ciliated epithelium in Lymnaea are involved in gliding and contribute significantly to fast crawling.

View Article and Find Full Text PDF

The sole of crawling gastropods is a unique model for studying the function of smooth muscles and ciliated epithelium. The gastropod snail Lymnaea stagnalis glides over the substratum without visible muscular contraction in its sole; consequently, the gliding was thought to be due to sole cilia. However, we have shown that the sole muscles in Lymnaea are phasic smooth muscles.

View Article and Find Full Text PDF

Prior behavioral and neurophysiological studies provide evidence that the nudibranch mollusk Tritonia orients to the earth's magnetic field. Earlier studies of electrophysiological responses in certain neurons of the brain to changing ambient magnetic fields suggest that although certain identified brain cells fire impulses when the ambient field is changed, these neuron somata and their central dentritic and axonal processes are themselves not primary magnetic receptors. Here, using semi-intact animal preparations from which the brain was removed, we recorded from peripheral nerve trunks.

View Article and Find Full Text PDF

This study revises the mechanisms of ciliary locomotion and demonstrates muscular contribution to locomotion rate in Lymnaea stagnalis. L. stagnalis sticks to the substratum by the foot sole and moves smoothly with no visible contractions of the foot.

View Article and Find Full Text PDF

In awake cats sitting with the head restrained, scratching was evoked using stimulation of the ear. Cats scratched the shoulder area, consistently failing to reach the ear. Kinematics of the hind limb movements and the activity of ankle muscles, however, were similar to those reported earlier in unrestrained cats.

View Article and Find Full Text PDF

We report here evidence that the pedal peptides (Peps) first discovered in mollusks may be neurotransmitters with a general role in control of molluscan somatic and visceral muscles. Using Tritonia peptide (TPep) antiserum we obtained morphological evidence for such a role in Helix aspersa. We localized 1,200-1,400 small and medium-sized (5-40 microm) TPep-IR neurons in the central nervous system of Helix and demonstrated the presence of these neurons in each ganglion.

View Article and Find Full Text PDF