The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers.
View Article and Find Full Text PDFAKT is a central signaling protein kinase that plays a role in the regulation of cellular survival metabolism and cell growth, as well as in pathologies such as diabetes and cancer. Human AKT consists of three isoforms (AKT1-3) that may fulfill different functions. Here, we report that distinct subcellular localization of the isoforms directly influences their activity and function.
View Article and Find Full Text PDFThe Golgi apparatus is subjected to fragmentation under several cellular processes such as mitosis. Here we describe two complementary approaches to analyze different Golgi morphological changes during its mitotic fragmentation, using classical immunofluorescence and imaging flow cytometry. Although fluorescent microscopy provides information on the exact Golgi architecture in distinct cells, the imaging flow cytometry combines the morphological data with the high-throughput quantification of flow cytometry.
View Article and Find Full Text PDFBackground: G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes.
View Article and Find Full Text PDFERK1c is an alternatively spliced isoform of ERK1 that specifically regulates mitotic Golgi fragmentation, which allows division of the Golgi during mitosis. We have previously shown that ERK1c translocates to the Golgi during mitosis where it is activated by a resident MEK1b to induce Golgi fragmentation. However, the mechanism of ERK1c functions in the Golgi remained obscure.
View Article and Find Full Text PDFThe p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFThe extracellular signal-regulated kinases 1/2 (ERK) are central signaling components that regulate stimulated cellular processes such as proliferation and differentiation. When dysregulated, these kinases participate in the induction and maintenance of various pathologies, primarily cancer. While ERK is localized in the cytoplasm of resting cells, many of its substrates are nuclear, and indeed, extracellular stimulation induces a rapid and robust nuclear translocation of ERK.
View Article and Find Full Text PDFMAPK/ERK kinase (MEK) 1/2 are central signaling proteins that serve as specificity determinants of the MAPK/ERK cascade. More than twenty activating mutations have been reported for MEK1/2, and many of them are known to cause diseases such as cancers, arteriovenous malformation and RASopathies. Changes in their intrinsic activity do not seem to correlate with the severity of the diseases.
View Article and Find Full Text PDFThe stimulated nuclear translocation of signaling proteins, such as MAPKs, is a necessity for the initiation and regulation of their physiological functions. Previously, we determined that nuclear translocation of the MAPKs p38 and JNK involves binding to heterodimers comprising importin 3 and either importin 7 or importin 9. Here, we identified the importin-binding region in p38 and JNK and developed a myristoylated peptide targeting this site that we called PERY.
View Article and Find Full Text PDFGenetic alterations in BRAF, NRAS and NF1 that activate the ERK cascade, account for over 80% of metastatic melanomas. However, ERK cascade inhibitors have been proven beneficial almost exclusively for BRAF mutant melanomas. One of the hallmarks of the ERK cascade is the nuclear translocation of ERK1/2, which is important mainly for the induction of proliferation.
View Article and Find Full Text PDFBackground/aims: Results from recent studies suggest that extremely low frequency magnetic fields (ELF-MF) interfere with intracellular signaling pathways related to proliferative control. The mitogen-activated protein kinases (MAPKs), central signaling components that regulate essentially all stimulated cellular processes, include the extracellular signal-regulated kinases 1/2 (ERK1/2) that are extremely sensitive to extracellular cues. Anti-phospho-ERK antibodies serve as a readout for ERK1/2 activation and are able to detect minute changes in ERK stimulation.
View Article and Find Full Text PDFThe RAS-ERK pathway plays a major regulatory role in various cellular processes. This pathway is hyperactivated and takes an active part in the malignant transformation of more than 85% of cancers. The hyperactivation is mainly due to oncogenic activating mutations in the pathway's components RAS, RAF and MEK, but also due to indirect mechanisms in cells transformed by other oncogenes.
View Article and Find Full Text PDFWhile the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells.
View Article and Find Full Text PDFA hallmark of the ERK1/2 functioning is their nuclear translocation, which is mainly required for the induction of proliferation. Activated ERK1/2 molecules that remain in the cytoplasm initiate other activities, including immediate feedback loops. Prevention of the nuclear translocation should therefore inhibit proliferation, without affecting cytoplasm-induced cellular processes.
View Article and Find Full Text PDFThe interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system.
View Article and Find Full Text PDFBackground: Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes). This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium.
View Article and Find Full Text PDFThe therapeutic potential of human vaccinia immunoglobulin (VIG) in orthopoxvirus infection was examined using two mouse models for human poxvirus, based on Ectromelia virus and Vaccinia Western Reserve (WR) respiratory infections. Despite the relatively fast clearance of human VIG from mice circulation, a single VIG injection protected immune-competent mice against both infections. Full protection against lethal Ectromelia virus infection was achieved by VIG injection up to one day post-exposure, and even injection of VIG two or three days post-infection conferred solid protection (60-80%).
View Article and Find Full Text PDFThe pigment epithelium-derived factor (PEDF) belongs to the family of noninhibitory serpins. Although originally identified in the eye, PEDF is widely expressed in other body regions including the plasma. This factor can act either as a neurotrophic or as an antiangiogenic factor, and we previously showed that the 2 effects of PEDF are regulated through phosphorylation by PKA and CK2.
View Article and Find Full Text PDFFour ErbB receptors and multiple growth factors sharing an epidermal growth factor (EGF) motif underlie transmembrane signaling by the ErbB family in development and cancer. Unlike other ErbB proteins, ErbB-2 binds no known EGF-like ligand. To address the existence of a direct ligand for ErbB-2, we applied algorithms based on genomic and cDNA structures to search sequence data bases.
View Article and Find Full Text PDFThe pigment epithelium-derived factor (PEDF) belongs to the superfamily of serine protease inhibitors (serpin). There have been 2 distinct functions attributed to this factor, which can act either as a neurotrophic or as an antiangiogenic factor. Besides its localization in the eye, PEDF was recently reported to be present also in human plasma.
View Article and Find Full Text PDFThe plasminogen activator inhibitor-1 (PAI-1) is stabilized in its inhibitory conformation by binding to Vitronectin (Vn). The anchorage of PAI-1 to the fibrin fibers was recently shown to be mediated by Vn, and as such to modulate fibrinolysis. Here we report the mapping of the fibrin binding sites in Vn using truncated recombinant Vns, and show that two segments of Vn are involved: one at its carboxyl terminus (within residues 348-459) and one at its amino terminus (within residues 1-44).
View Article and Find Full Text PDF