To calibrate a murine model to study premalignant to malignant multiple myeloma, mice were inoculated with different amounts of myeloma cells, and changes in the immune profile were tracked for over 200 days. The model highlights the development of T-cell exhaustion and suppressor before the appearance of clinical symptoms.
View Article and Find Full Text PDFCurrent standard frontline therapy for newly diagnosed patients with multiple myeloma (NDMM) involves induction therapy, autologous stem cell transplantation (ASCT), and maintenance therapy. Major efforts are underway to understand the biological and the clinical impacts of each stage of the treatment protocols on overall survival statistics. The most routinely used drugs in the pre-ASCT "induction" regime have different mechanisms of action and are employed either as monotherapies or in various combinations.
View Article and Find Full Text PDFFluorescent dyes linked to drug delivery systems provide important real-time information on the efficacy of drug delivery. However, the quantitative monitoring of drug distribution is challenging because of interferences from the biological sample and instrumental setup. To improve quantification of anticancer drug delivery followed by drug release in tumor, we equipped an antibody-drug conjugate (ADC) with a turn-on near-infrared (NIR) dye, sensitive to drug release, and a reference NIR dye.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
February 2020
Recent reviews of transcranial direct current stimulation (tDCS) show limited support for its initially cited enhancing effects on working memory (WM). They highlight the need for additional research, assessing the specific circumstances that optimize stimulation outcome. Social stress is an attractive candidate in this regard, as it affects WM and is mediated by prefrontal cortex activity; tDCS that targets these neuronal networks may, therefore, interact with social stress to affect WM.
View Article and Find Full Text PDFBackground: Peptide-drug-conjugates (PDCs) are being developed as an effective strategy to specifically deliver cytotoxic drugs to cancer cells. However one of the challenges to their successful application is the relatively low stability of peptides in the blood, liver and kidneys. Since AuNPs seem to have a longer plasma half-life than PDCs, one approach to overcoming this problem would be to conjugate the PDCs to gold nanoparticles (AuNPs), as these have demonstrated favorable physico-chemical and safety properties for drug delivery systems.
View Article and Find Full Text PDFThe newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.
View Article and Find Full Text PDFIsolated toluene-degrading Pseudomonas stutzeri ST-9 bacteria were grown in a minimal medium containing toluene (100 mg·L(-1)) (MMT) or glucose (MMG) as the sole carbon source, with specific growth rates of 0.019 h(-1) and 0.042 h(-1), respectively.
View Article and Find Full Text PDFTargeting drugs through small-molecule carriers with a high affinity to receptors on cancer cells can overcome the lack of target cell specificity of most anticancer drugs. These targeted carrier-drug conjugates are also capable of reversing drug resistance in cancer cells. Although many targeted drug delivery approaches are being tested, the linkage of several and different drugs to a single carrier molecule might further enhance their therapeutic efficacy, particularly if the drugs are engineered for variable time release.
View Article and Find Full Text PDFBackground: Myocarditis is an inflammatory disorder of the heart in which T lymphocytes have a central role. No effective treatment is currently at hand for management of the myocarditis. Lymphocyte function requires the active signal transducer Ras.
View Article and Find Full Text PDFObjective: While both play a role in the transcriptional response of hypoxic endothelial cells (ECs), hypoxia-inducible factor-1alpha (HIF-1alpha) and HIF-2alpha differ in their transactivation sites, pointing at potentially different target genes. We studied the discrete and common effects of HIF-1alpha and HIF-2alpha on the cytokine expression and vasculogenic properties of ECs.
Methods And Results: H5V and bovine aortic ECs were transfected to express HIF-1alpha, HIF-2alpha or both.
Bone marrow stromal cells (BMSCs) contain progenitors capable of participating in postnatal angiogenesis. Hypoxia-inducible factors (HIFs) mediate endothelial activation by driving the expression of multiple angiogenic factors. We explored the potential of HIF-1alpha and HIF-2alpha modification in BMSCs, as a tool to improve cell-based angiogenic therapy.
View Article and Find Full Text PDFPurpose: To evaluate the influence of some widely used antiglaucoma agents on angiogenesis in a novel rat cornea model.
Methods: Angiogenesis was induced in 32 rats by slow-release polymer pellets containing basic fibroblast growth factor (bFGF) placed in a corneal micropocket. Angiogenesis was later measured and compared in groups of rats given one of four antiglaucoma drug therapies and one control group.
Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are in widespread use due to their LDL reducing properties and concomitant improvement of clinical outcome in patients with and without preexisting atherosclerosis. Considerable evidence suggests that immune mediated mechanisms play a dominant role in the beneficial effects of statins. Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) have a key role in the prevention of various inflammatory and autoimmune disorders by suppressing immune responses.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2007
Objective: Naturally occurring CD4+ CD25+ regulatory T cells (Tregs) exert suppressive effects on effector CD4 cells and downregulate experimental autoimmune disorders. We investigated the importance and potential role of Tregs in murine atherogenesis.
Methods And Results: Tregs were investigated comparatively between aged and young apolipoprotein E-knockout (ApoE-KO) mice and age-matched C57BL/6 littermates.
Aims: Considerable evidence supports the role of innate and adaptive immunity in the progression and destabilization of the atheromatous plaque. Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) are a subpopulation of lymphocytes that are capable of suppressing the progression of experimental autoimmune disorders. We have hypothesized that peripheral numbers and function of Tregs would be deranged in patients with acute coronary syndromes (ACS).
View Article and Find Full Text PDFAims: Doxorubicin (Dox) is a potent chemotherapeutic agent associated with severe cardiotoxicity. Erythropoietin (Epo) has recently been shown to exhibit proangiogenic properties related to endothelial progenitor cell (EPC) mobilization. We tested the hypothesis that EPC are compromised in rats with Dox-induced cardiotoxicity and correction of this functional impairment by treatment with Epo could result in attenuation of myocardial dysfunction.
View Article and Find Full Text PDFBackground: High incidence and intensity of RANTES (CC chemokine) expression were noted in advanced breast carcinoma.
Objective: To present two cases of breast carcinoma patients in whom RANTES expression was analyzed in parallel to disease progression.
Results: Although no evidence of malignancy was detected in the axillary lymph nodes of the two patients, their disease progressed.
Breast cancer progression may be affected by various cellular components expressed by the tumor cells and/or by microenvironmental factors. Many studies report the correlation between breast cancer progression and monocyte infiltration into the tumor site. We have identified recently the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES), a major monocyte chemoattractant expressed by breast tumor cells, as a potential contributor to breast cancer progression.
View Article and Find Full Text PDF