Publications by authors named "Galgani M"

Article Synopsis
  • ECP is a promising treatment for managing acute rejection in heart transplant patients by modulating the immune system, particularly through the action of regulatory T cells (Treg).
  • The study involved 14 heart transplant participants undergoing ECP therapy, assessing the effects on Treg frequency and their suppressive functions over time, alongside a control group.
  • Results indicate that ECP significantly boosts the number and function of suppressive Tregs, particularly those marked by the transcription factor FoxP3, which helps control immune responses and prevent graft rejection.
View Article and Find Full Text PDF

The molecular mechanisms that govern differential T cell development from CD4CD25conventional T (Tconv) into CD4CD25 forkhead-box-P3 (FoxP3) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2.

View Article and Find Full Text PDF

The original notifications (n=1355) managed by the Rapid Alert System for Food and Feed of the Tuscany region in the seven-year period 2015-2021 were analyzed. 68.9% of them were classified as alert notifications, and they mostly originated (56.

View Article and Find Full Text PDF

Background And Objectives: The role of B cells in the pathogenic events leading to relapsing multiple sclerosis (R-MS) has only been recently elucidated. A pivotal step in defining this role has been provided by therapeutic efficacy of anti-CD20 monoclonal antibodies. Indeed, treatment with anti-CD20 can also alter number and function of other immune cells not directly expressing CD20 on their cell surface, whose activities can contribute to unknown aspects influencing therapeutic efficacy.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect.

View Article and Find Full Text PDF

Aims/hypothesis: Type 1 diabetes is an autoimmune disorder that is characterised by destruction of pancreatic beta cells by autoreactive T lymphocytes. Although islet autoantibodies (AAb) are an indicator of disease progression, specific immune biomarkers that can be used as target molecules to halt development of type 1 diabetes have not been discovered. Soluble immune checkpoint molecules (sICM) play a pivotal role in counteracting excessive lymphocyte responses, but their role in type 1 diabetes is unexplored.

View Article and Find Full Text PDF

Objective: The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex.

View Article and Find Full Text PDF

Background: Visceral adiposity has been associated with an increased risk of critical illness in COVID-19 patients. However, if it also associates to a poor survival is still not well established. The aim of the study was to assess the relationship between abdominal fat distribution and COVID-19 mortality.

View Article and Find Full Text PDF

Context: Poor glucose control has been associated with increased mortality in COVID-19 patients with type 1 diabetes (T1D).

Objective: This work aimed to assess the effect of prevaccination glucose control on antibody response to the SARS-CoV-2 vaccine BNT162b2 in T1D.

Methods: We studied 26 patients with T1D scheduled to receive 2 doses, 21 days apart, of BNT162b2, followed prospectively for 6 months with regular evaluation of SARS-CoV-2 antibodies and glucose control.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is poorly susceptible to cytotoxic therapies. Amplification of the epidermal growth factor receptor (EGFR) and deletion of exons 2 to 7, which generates EGFR variant III (vIII), are the most common molecular alterations of GBMs that contribute to the aggressiveness of the disease. Recently, it has been shown that EGFR/EGFRvIII-targeted inhibitors enhance mitochondrial translocation by causing mitochondrial accumulation of these receptors, promoting the tumor drug resistance; moreover, they negatively modulate intrinsic mitochondria-mediated apoptosis by sequestering PUMA, leading to impaired apoptotic response in GBM cells.

View Article and Find Full Text PDF

Aims/hypothesis: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes.

View Article and Find Full Text PDF

Aims/hypothesis: We assessed the levels of blood circulating immune checkpoint molecules (ICMs) at diagnosis of type 1 diabetes, and determined their association with the risk of developing an additional autoimmune disorder over time.

Methods: Children with new-onset type 1 diabetes (n = 143), without biological and/or clinical signs of additional autoimmune disorders, and healthy children (n = 75) were enrolled, and blood circulating levels of 14 ICMs were measured. The children with type 1 diabetes were divided into two groups on the basis of the development of an additional autoimmune disease in the 5 years after diabetes onset.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of the insulin secreting β-cells, with consequent aberrant blood glucose levels. Hyperglycemia is the common denominator for most of the chronic diabetic vascular complications, which represent the main cause of life reduction in T1D patients. For this disease, three interlaced medical needs remain: understanding the underlying mechanisms involved in pancreatic β-cell loss; identifying biomarkers able to predict T1D progression and its related complications; recognizing novel therapeutic targets.

View Article and Find Full Text PDF

Liquid biopsy, which allows the isolation of circulating cell-free (ccf) DNA from blood, is an emerging noninvasive tool widely used in oncology for diagnostic and prognosis purposes. Previous data have shown that serum cfDNA discriminates idiopathic pulmonary fibrosis (IPF) from other interstitial lung diseases. Our study aimed to measure plasma levels of ccfDNA in 59 consecutive therapy-naive and clinically stable IPF patients.

View Article and Find Full Text PDF

This study aims at building an ITS gene dataset to support the Italian Health Service in mushroom identification. The target species were selected among those mostly involved in regional (Tuscany) poisoning cases. For each target species, all the ITS sequences already deposited in GenBank and BOLD databases were retrieved and accurately assessed for quality and reliability by a systematic filtering process.

View Article and Find Full Text PDF

Human CD4CD25FOXP3 regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2).

View Article and Find Full Text PDF

Despite encouraging progresses achieved in the management of viral diseases, efficient strategies to counteract infections are still required. The current global challenge highlighted the need to develop a rapid and cost-effective strategy to counteract the SARS-CoV-2 pandemic. Lipid metabolism plays a crucial role in viral infections.

View Article and Find Full Text PDF
Article Synopsis
  • There is a significant link between how the body metabolizes energy and its vulnerability to Mycobacterium tuberculosis (MTB), where metabolism influences immune responses and infection severity.
  • Controlled caloric restriction (CR) in susceptible mice showed protection against lung MTB infections by lowering bacterial presence, reducing lung damage, and preventing foam cell formation.
  • The study found that CR triggers a shift in metabolism that enhances immune cell function and reduces lung tissue damage, suggesting CR could be a promising method to improve immunity against MTB infections.
View Article and Find Full Text PDF

Regulatory T (Treg) cells are known to orchestrate the regulatory mechanisms aimed at suppressing pathological auto-reactive immune responses and are thus key in ensuring the maintenance of immune homeostasis. On the other hand, the presence of Treg cells with enhanced suppressive capability in a plethora of human cancers represents a major obstacle to an effective anti-cancer immune response. A relevant research effort has thus been dedicated to comprehend Treg cell biology, leading to a continuously refining characterization of their phenotype and function and unveiling the central role of metabolism in ensuring Treg cell fitness in cancer.

View Article and Find Full Text PDF

Mulibrey (muscle-liver-brain-eye) syndrome (MUL) is an autosomal recessive disorder caused by mutations in the () gene, encoding for TRIM37 a member of the TRIM E3 ubiquitin ligase protein family. MUL patients are characterized by growth retardation, dysmorphic features, and a wide range of abnormalities affecting different organs. However, T-cell abnormalities have not been observed in MUL subjects, to date.

View Article and Find Full Text PDF

Over the last few years, immune cell metabolism has become one of the most stimulating areas of investigation in the field of immunology. Compelling evidence has revealed that metabolic pathways are closely associated to cell functions and immune cells adopt defined metabolic programs to sustain their activity and respond to micro-environmental demands. It is now clear that alterations in cell metabolism can favour dysregulation typical of autoreactive immune cells, thus sustaining loss of immunological self-tolerance.

View Article and Find Full Text PDF

Aims/hypothesis: We aimed to analyse the association between plasma circulating microRNAs (miRNAs) and the immunometabolic profile in children with type 1 diabetes and to identify a composite signature of miRNAs/immunometabolic factors able to predict type 1 diabetes progression.

Methods: Plasma samples were obtained from children at diagnosis of type 1 diabetes (n = 88) and at 12 (n = 32) and 24 (n = 30) months after disease onset and from healthy control children with similar sex and age distribution (n = 47). We quantified 60 robustly expressed plasma circulating miRNAs by quantitative RT-PCR and nine plasma immunometabolic factors with a recognised role at the interface of metabolic and immune alterations in type 1 diabetes.

View Article and Find Full Text PDF