Endocytosis mediates the entry of surface and extracellular cargoes into the cell. In this chapter, we describe assays to quantitively measure the endocytosis of both soluble and transmembrane cargo proteins, taking advantage of cleavable fluorescent dyes labeling cargo proteins or antibodies recognizing cargo proteins. After removing surface-bound fluorescent dye, internalized cargoes are measured using confocal imaging and flow cytometry.
View Article and Find Full Text PDFAims: Sex differences have been consistently identified in cardiac physiology and incidence of cardiac disease. However, the underlying biological causes for the differences remain unclear. We sought to characterize the cardiac non-myocyte cellular landscape in female and male hearts to determine whether cellular proportion of the heart is sex-dependent and whether endocrine factors modulate the cardiac cell proportions.
View Article and Find Full Text PDFBackground: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear.
View Article and Find Full Text PDFCharacterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDF