Publications by authors named "Galen B King"

In this paper, we present the experimental levitation control development in a high-accuracy magnetic levitation transport system. With this levitation control implementation, the input and output of sub-systems can be verified through a real-time system. The levitation control loop has a fast response, and the control algorithms are easily implemented.

View Article and Find Full Text PDF

A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). To provide quantitative analysis, spectral dependence of diffraction ring width, gap, maxima, minima, and the first deflection point are monitored.

View Article and Find Full Text PDF

In order to understand the biophysics behind collective behavior of a bacterial colony, a confocal displacement meter was used to measure the profiles of the bacterial colonies, together with a custom built optical density circuits. The system delivered essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony. For example, the aspect ratio of S.

View Article and Find Full Text PDF

Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7).

View Article and Find Full Text PDF

Quantitative two-point hydroxyl time-series measurements have been performed in a turbulent nonpremixed flame by using two-point picosecond time-resolved laser-induced fluorescence. The current diagnostic system has been improved from its preliminary version to address optical aberrations and fluorescence lifetime fluctuations. In particular, with a newly designed collection system, the aberration-limited blur spot is reduced from 6 mm to 180 microm.

View Article and Find Full Text PDF

A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively.

View Article and Find Full Text PDF

We report a technique that is capable of making simultaneous two-point time-series measurements of minor-species concentrations in turbulent flames. The experimental setup, which incorporates picosecond time-resolved laser-induced fluorescence, has a spatial resolution of less than 250 microm and a temporal resolution of less than 100 micros, which spatially and temporally resolve microscales in many turbulent flows. Two-point time-series data are given for a standard turbulent nonpremixed flame at Re= 10,000, including a discussion of potential implications.

View Article and Find Full Text PDF