Publications by authors named "Galdieri M"

The presence of the HGF/Met system in the testicular myoid cells was first discovered by our group. However, the physiological role of this pathway remains poorly understood. We previously reported that HGF increases uPA secretion and TGF-β activation in cultured tubular fragments and that HGF is maximally expressed at Stages VII-VIII of the seminiferous epithelium cycle, when myoid cell contraction occurs.

View Article and Find Full Text PDF
Article Synopsis
  • HGF is a cytokine that plays a crucial role in mouse embryonic organ development, specifically in the testis, where it affects fetal Leydig cells (FLCs).
  • The study reveals that HGF helps reduce cell death (apoptosis) in FLCs but does not promote their growth; instead, it supports their differentiation into mature cells.
  • HGF increases the expression of specific markers associated with Leydig cell maturation while decreasing markers linked to progenitor cells, highlighting its role as a survival and differentiation factor in testis development.
View Article and Find Full Text PDF

We have studied the effects of HGF on BTB dynamics in adult rats. We demonstrate that, at stages VII-VIII of the epithelium wave when germ cells traverse the BTB, HGF reduces the levels of occludin and influences its distribution pattern and assembling. Moreover, we report that, at stages VII-VIII, HGF significantly increases the amount of active TGF-β and the amount of uPA present in the tubules.

View Article and Find Full Text PDF

Interactions between theca and granulosa cells of the follicle are critical for the coordination of ovarian follicle development. The cell-cell interactions are mediated through the local production and actions of a variety of factors. The current study is designed to investigate the expression of Hgf and its receptor, c-Met, in the mouse ovary during in vivo folliculogenesis.

View Article and Find Full Text PDF

Reproductive dysfunction is a consequence of diabetes, but the underlying mechanisms are poorly understood. This study investigated the histological and molecular alterations in the testes of rats injected with streptozotocin at prepuperal (SPI rats) and adult age (SAI rats) to understand whether diabetes affects testicular tissue with different severity depending on the age in which this pathological condition starts. The testes of diabetic animals showed frequent abnormal histology, and seminiferous epithelium cytoarchitecture appeared altered as well as the occludin distribution pattern.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is a pleiotropic factor that plays multiple roles during mammalian development. We previously demonstrated that in the postnatal testes, the HGF receptor, c-met, is expressed by Leydig cells and HGF increases the steroidogenetic activity of the cells. In the present article, we report that HGF modifies the composition of the extracellular matrix of cultured Leydig cells.

View Article and Find Full Text PDF

Spaceflight experiments carried out in microgravity environments have revealed that exposure to altered gravity condition results in alteration of several cellular functions and, consequently, of several apparatuses. There is some evidence in the literature indicating that spaceflight affects the physiology of the testis. The data on effects of spaceflight or simulated microgravity on testicular function, however, sometimes appear contradictory.

View Article and Find Full Text PDF

In mammalian testes Sertoli cells form tight junctions whose function is fundamental for the maintenance of a normal spermatogenesis. Hepatocyte growth factor (HGF) is a cytokine influencing the cellular tight junctions either in normal or in tumor cells. We have previously demonstrated that HGF is expressed in the rat testis and influences many functional activities of somatic and germ cells.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) regulates many cellular functions acting through c-Met, its specific tyrosine kinase receptor. We previously reported that in prepuberal rats HGF is secreted by the peritubular myoid cells during the entire postnatal testicular development and by the Sertoli cells only at puberty. We have also demonstrated that germ cells at different stages of development express c-Met and that HGF modulates germ cell proliferation and apoptosis.

View Article and Find Full Text PDF

The hepatocyte growth factor (HGF) is a pleiotropic cytokine able to regulate different cellular functions. HGF action is mediated by its receptor, c-met, a glycoprotein with tyrosine kinase activity. We previously demonstrated that c-met is expressed in the newly formed seminiferous cords of the mice embryonic testes and that HGF acts as a morphogenetic factor.

View Article and Find Full Text PDF

The hepatocyte growth factor (HGF) is a pleiotropic cytokine that influences mitogenesis, motility and differentiation of many different cell types by its tyrosine kinase receptor c-Met. We previously demonstrated that the c-Met/HGF system is present and functionally active during postnatal testis development. We found also that spermatozoa express c-Met and that HGF has a positive effect on the maintenance of sperm motility.

View Article and Find Full Text PDF

In mammals spaceflight influences spermatogenesis since spermatogonial germ cell proliferation, compared to synchronous controls, is lightly decreased in irradiated or flown rats. Moreover, changes of the plasmatic testosterone production was described either in flight rats, or in rats maintained in simulated microgravity conditions. The hormonal levels of the astronauts change as it has been previously described, including hormones involved in the regulation of spermatogenesis such as testosterone and luteinizing hormone (LH).

View Article and Find Full Text PDF

Hepatocyte growth factor regulates many cellular functions acting through c-met, its specific receptor with tyrosine kinase activity. We have previously reported that in prepubertal rats HGF is secreted in the seminiferous tubules by purified peritubular myoid cells whereas Sertoli cells do not express HGF mRNA. In the present paper we report that HGF is expressed by the myoid cells during the entire postnatal testicular development studied and secreted in the culture medium.

View Article and Find Full Text PDF

Platelet-derived growth factors (PDGFs) are paracrine growth factors mediating epithelial-mesenchymal interactions and exerting multiple biological activities which include cell proliferation, motility, and differentiation. As previously demonstrated, PDGFs act during embryonic development and recently, by culturing male genital ridges, we have demonstrated that PDGF-BB is able to support in vitro testicular cord formation. In the present paper, we report that PDGF-BB is present during embryonic testis development and, in organ culture, induces cord formation although with reduced diameters compared with the cords formed in the genital ridges cultured in the presence of HGF.

View Article and Find Full Text PDF

Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells.

View Article and Find Full Text PDF

The platelet-derived growth factor (PDGF) family of ligands and receptors play a pivotal role in the development of various organs. The critical importance of the PDGF-mediated signaling during embryonic development and adult physiology of the kidney and the common mesonephric origin of the epididymis and kidney prompted us to investigate the immunohistochemical localization of PDGF A- and B-chain and PDGF receptor (PDGFR) alpha- and beta-subunit in rat and mouse epididymis, the expression profiles of the corresponding mRNAs, and the consequences of a loss-of-function mutation at the PDGF-A, PDGF-B, and PDGFR-beta loci on mouse epididymis phenotypic appearance. Prenatally, PDGF-A and PDGFR-alpha immunohistochemical staining was seen in both species, whereas PDGF-B and PDGFR-beta were absent.

View Article and Find Full Text PDF

Background: In vitro studies have demonstrated that interleukin (IL)-1beta decreases insulin and DNA contents in pancreatic islet beta cells, causing structural damage, that it is toxic to cultured human islet beta cells and that it is able to induce apoptosis in these cells.

Materials And Methods: Isolated rat islets of Langerhans were exposed in vitro to interleukin (IL)-1beta and either the imidazoline compound RX871024 (RX) or/and M40403, an Mn-containing superoxide dismutase mimetic (MnSODm).

Results: Insulin secretion, on days 1, 2 and 3 after challenge with 3 ng/ml of IL-1beta, was almost abolished and this was accompanied by an early increase in MnSOD activity.

View Article and Find Full Text PDF

Mammalian spermatozoa acquire motility and fertilizing capacity during their transit through the epididymis. Hepatocyte growth factor (HGF) is a pleiotropic cytokine with potent motogenic capacities that has been identified in different organs, including the mammalian male genital tract. In mice, HGF is present in the testis and, in large amounts, in the distal part of the epididymis.

View Article and Find Full Text PDF

The hepatocyte growth factor (HGF) is a pleiotropic cytokine whose action is mediated by c-met, a glycoproteic receptor with tyrosine kinase activity which transduces its multiple biological activities including cell proliferation, motility and differentiation. During embryonic development HGF acts as a morphogenetic factor as previously demonstrated for metanephric and lung development. Recently, culturing male genital ridges, we demonstrated that HGF is able to support in vitro testicular cord formation.

View Article and Find Full Text PDF

The met protooncogene encodes the hepatocyte growth factor receptor (HGFR, c-met). C-met, a tyrosine kinase receptor protein, is widely expressed in different cell types including the male reproductive tract. As we recently demonstrated, both c-met messenger RNA and protein are expressed in prebuberal rat testis.

View Article and Find Full Text PDF

Tissue type (t) and urokinase type (u) plasminogen activators (PAs) have been shown to be secreted by Sertoli cells in the seminiferous tubules in a cyclic fashion and to be dependent upon FSH stimulation or upon the presence of adjacent spermatogenic cells. In the present study we have analyzed the production of PAs by retinoid-treated rat Sertoli cells. In addition, because retinoids modulate the response of Sertoli cells to FSH either potentiating or antagonizing its action, we have investigated a possible modulation of FSH-stimulated PA production.

View Article and Find Full Text PDF

To evaluate the effect of antigen-pulsed dendritic cell (DC) transfer on the development of diabetes, 5-week-old female NOD mice received a single iv injection of splenic syngeneic DC from euglycemic NOD mice pulsed in vitro with human y globulin (HGG). Eleven of 12 mice were protected from the development of diabetes up to the age of 25 weeks, and the insulitis score was significantly reduced. In contrast, NOD mice receiving unpulsed splenic DCs showed histological signs of insulitis and course of type 1 diabetes similar to untreated NOD mice.

View Article and Find Full Text PDF

Streptozotocin (STZ) is a widely used diabetogenic agent that damages pancreatic islet beta cells by activating immune mechanisms, when given in multiple low doses, and by alkylating DNA, when given at a single high dose. Actually, STZ contains a nitroso moiety. Incubation of rat islets with this compound has been found to generate nitrite; moreover, photoinduced NO production from STZ has been demonstrated.

View Article and Find Full Text PDF

The hepatocyte growth factor (HGF) receptor, c-met, transduces the HGF multiple biological activities. During embryonic development the system HGF/c-met regulates the morphogenesis of different organs and tissues. In this study we examined c-met gene expression during mouse testis development and, by means of Northern blot and in situ hybridization, we report the receptor expression pattern.

View Article and Find Full Text PDF