Publications by authors named "Galanakis D"

In this paper, we propose a model that connects two standard inflammatory responses to viral infection, namely, elevation of fibrinogen and the lipid drop shower, to the initiation of non-thrombin-generated clot formation. In order to understand the molecular basis for the formation of non-thrombin-generated clots following viral infection, human epithelial and Madin-Darby Canine Kidney (MDCK, epithelial) cells were infected with H1N1, OC43, and adenovirus, and conditioned media was collected, which was later used to treat human umbilical vein endothelial cells and human lung microvascular endothelial cells. After direct infection or after exposure to conditioned media from infected cells, tissue surfaces of both epithelial and endothelial cells, exposed to 8 mg/mL fibrinogen, were observed to initiate fibrillogenesis in the absence of thrombin.

View Article and Find Full Text PDF

Background: Chamomile administration may have desirable effects in the perioperative setting. Current practice, however, discourages perioperative chamomile use due to a theoretical increase in bleeding. Therefore, we evaluated if chamomile acutely (within 4 h of ingestion) prolongs coagulation assays.

View Article and Find Full Text PDF

Background: Chamomile is consumed worldwide for enjoyment and its potentially desirable properties. Widespread patient resource websites, however, discourage preoperative chamomile intake, lest bleeding could worsen. This precaution, though, stems largely from indirect evidence in one case report.

View Article and Find Full Text PDF

Soluble fibrin (SF) in blood consists of monomers lacking both fibrinopeptides A with a minor population in multimeric clusters. It is a substantial component of isolated fibrinogen (fg), which spontaneously self-assembles into protofibrils progressing to fibers at sub-physiologic temperatures, a process enhanced by adsorption to hydrophobic and some metal surfaces. Comparisons of SF-rich (FR) and SF-depleted (FD) fg isolates disclosed distinct molecular imprints of each via an adsorption/desorption procedure using gold surfaced silica microplates.

View Article and Find Full Text PDF

 Soluble fibrin (SF) is a substantial component of plasma fibrinogen (fg), but its composition, functions, and clinical relevance remain unclear. The study aimed to evaluate the molecular composition and procoagulant function(s) of SF.  Cryoprecipitable, SF-rich (FR) and cryosoluble, SF-depleted (FD) fg isolates were prepared and adsorbed on one hydrophilic and two hydrophobic surfaces and scanned by atomic force microscopy (AFM).

View Article and Find Full Text PDF

Objective: Four-factor prothrombin complex concentrate (4F-PCC) was approved by the US Food and Drug Administration in 2013 for management of severely bleeding patients on warfarin therapy. We describe use of 4F-PCC at a large, suburban academic center.

Methods: We retrospectively reviewed all patients receiving 4F-PCC from its introduction through 2016 at a large level 1 trauma center.

View Article and Find Full Text PDF

Background: Few studies have rigorously assessed the impact of red blood cell (RBC) transfusion on oxygen delivery. Several large trials demonstrated no clinical outcome differences between transfusion of shorter-storage vs prolonged-storage RBCs. These trials did not directly assess functional measures of oxygen delivery.

View Article and Find Full Text PDF

Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear.

View Article and Find Full Text PDF

The flexible C-terminal parts of fibrinogen's Aα chains named the αC regions have been shown to play a role in fibrin self-assembly, although many aspects of their structure and functions remain unknown. To examine the involvement of the αC regions in the early stages of fibrin formation, we used high-resolution atomic force microscopy to image fibrinogen and oligomeric fibrin. Plasma-purified full-length human fibrinogen or des-αC fibrinogen lacking most of the αC regions, untreated or treated with thrombin, was imaged.

View Article and Find Full Text PDF

We studied the hydrodynamic behavior of fibrinogen, a blood plasma protein involved in blood clotting, in a broad 0.3-60 mg/mL range of concentration and 5-42 °C temperature using pulsed-field gradient H NMR-diffusometry. Arrhenius plots revealed the activation energy for fibrinogen diffusion E = 21.

View Article and Find Full Text PDF

Unlabelled: Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen.

View Article and Find Full Text PDF

Background: The inherited dysfibrinogenemias comprise rare congenital coagulation disorders which are clinically characterized by bleeding diathesis and, in occasional patients, by thrombotic tendency or combined bleeding-thrombotic events. In recent years, accumulating evidence suggested that fibrinogen has a critical role in the pathogenesis of neuroinflammatory disorders, including multiple sclerosis. We describe the presentation and long-term follow-up of a patient with inherited dysfibrinogenemia and concomitant clinical and laboratory evidence of demyelinating disease.

View Article and Find Full Text PDF

The molecular imprinting technique has tremendous applications in artificial enzymes, bioseparation, and sensor devices. In this study, a novel molecular imprinting (MI) biosensor platform was developed for the detection of a broad range of biomolecules with different sizes. Previously this method has been applied to 2D molecular imprinting, where the height of the self-assembled monolayer (SAM) of around 2 nm limited the maximum dimensions of the molecule that can be imprinted to create template-shaped cavities.

View Article and Find Full Text PDF

The present study extends our previous investigation of circulating antibody/fibrinogen/C1q complexes (FgIgC) associated with thrombosis in a heterophenotypic AαR16C proband, by focusing on the molecular and functional characteristics of the FgIgC, isolated by cryoprecipitation, FgIgC components were demonstrated by SDS-PAGE and by rotary shadowing electron microscopy. Affinity chromatography was used to isolate IgG and fibrinogen from FgIgC. Thrombin-induced clots were examined by scanning electron microscopy and turbidity measurements.

View Article and Find Full Text PDF

Introduction: Thromboelastography (TEG), a widely used clinical point of care coagulation test, is poorly understood. To investigate its fibrin determinants we used normal and variant fibrinogen isolates.

Materials And Methods: We focused mainly on the TEG maximum signal amplitude (MA), a shear modulus and clot stiffness indicator.

View Article and Find Full Text PDF

Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β.

View Article and Find Full Text PDF

Wound healing is a complex process initiated by the formation of fibrin fibers and endothelialization. Normally, this process is triggered in a wound by thrombin cleavage of fibrinopeptides on fibrinogen molecules, which allows them to self spontaneously-assemble into large fibers that provide the support structure of the clot and promote healing. We have found that the fibrous structures can also form without thrombin on most polymer or metal surfaces, including those commonly used for stents.

View Article and Find Full Text PDF

At presentation, variant or "look-alike" conditions can resemble TTP. We reviewed charts of 26 consecutive patients treated for presumed TTP. Of 15 classic TTP patients, 11 were tested for ADAMTS13; all showed severe deficiency, and inhibitor levels correlated with probability of relapse.

View Article and Find Full Text PDF

Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling.

View Article and Find Full Text PDF

We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, T(c) may be enhanced through an increase in the d-wave pairing interaction (V(d)) or the bare pairing susceptibility (χ(0d)). At optimal doping, where V(d) is revealed to be featureless, we find a power-law behavior of χ(0d)(ω=0), replacing the BCS log, and strongly enhanced T(c).

View Article and Find Full Text PDF

Background: Exposure of cryptic, functional sites on fibrinogen upon its adsorption to hydrophobic surfaces of biomaterials has been linked to an inflammatory response and fibrosis. Such adsorption also induces ordered fibrinogen aggregation which is poorly understood.

Objective: To investigate hydrophobic surface-induced fibrinogen aggregation.

View Article and Find Full Text PDF

Scar formation in the nervous system begins within hours after traumatic injury and is characterized primarily by reactive astrocytes depositing proteoglycans that inhibit regeneration. A fundamental question in CNS repair has been the identity of the initial molecular mediator that triggers glial scar formation. Here we show that the blood protein fibrinogen, which leaks into the CNS immediately after blood-brain barrier (BBB) disruption or vascular damage, serves as an early signal for the induction of glial scar formation via the TGF-beta/Smad signaling pathway.

View Article and Find Full Text PDF