Cryptic prophages (CPs) are elements of bacterial genomes acquired from bacteriophage that infect the host cell and ultimately become stably integrated within the host genome. While some proteins encoded by CPs can modulate host phenotypes, the potential for Transcription Factors (TFs) encoded by CPs to impact host physiology by regulating host genes has not been thoroughly investigated. In this work, we report hundreds of host genes regulated by DicC, a DNA-binding TF encoded in the Qin prophage of .
View Article and Find Full Text PDFThe DNA binding of most Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of DNA binding for 139 TFs using ChIP-Seq. We used these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence.
View Article and Find Full Text PDFAdvanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities.
View Article and Find Full Text PDFMonoamine oxidases (MAOs) play a key role in the breakdown of primary and secondary amines. In eukaryotic organisms, these enzymes are vital to the regulation of monoamine neurotransmitters and the degradation of dietary monoamines. MAOs have also been identified in prokaryotic species, although their role in these organisms is not well understood.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET) is a widely used and ideal transduction modality for fluorescent based biosensors as it offers high signal to noise with a visibly detectable signal. While intense efforts are ongoing to improve the limit of detection and dynamic range of biosensors based on biomolecule optimization, the selection of and relative location of the dye remains understudied. Herein, we describe a combined experimental and computational study to systematically compare the nature of the dye, , organic fluorophore (Cy5 or Texas Red) inorganic nanoparticle (QD), and the position of the FRET donor or acceptor on the biomolecular components.
View Article and Find Full Text PDFGenomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward.
View Article and Find Full Text PDFWe describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry to monitor changes in current output as a progesterone (PRG)-specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications.
View Article and Find Full Text PDFProgesterone monitoring is an essential component of in vitro fertilization treatments and reproductive management of dairy cows. Gold-standard biosensors for progesterone monitoring rely on antibodies, which are expensive and difficult to procure. We have developed an alternative transcription factor-based sensor that is superior to conventional progesterone biosensors.
View Article and Find Full Text PDFIn many countries targeting malaria elimination, persistent malaria infections can have parasite loads significantly below the lower limit of detection (LLOD) of standard diagnostic techniques, making them difficult to identify and treat. The most sensitive diagnostic methods involve amplification and detection of DNA by polymerase chain reaction (PCR), which requires expensive thermal cycling equipment and is difficult to deploy in resource-limited settings. Isothermal DNA amplification assays have been developed, but they require complex primer design, resulting in high nonspecific amplification, and show a decrease in sensitivity than PCR methods.
View Article and Find Full Text PDFRecently, allosteric transcription factors (TFs) were identified as a novel class of biorecognition elements for in vitro sensing, whereby an indicator of the differential binding affinity between a TF and its cognate DNA exhibits dose-dependent responsivity to an analyte. Described is a modular bead-based biosensor design that can be applied to such TF-DNA-analyte systems. DNA-functionalized beads enable efficient mixing and spatial separation, while TF-labeled semiconductor quantum dots serve as bright fluorescent indicators of the TF-DNA bound (on bead) and unbound states.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Immobilization of biosensors in or on a functional material is critical for subsequent device development and translation to wearable technology. Here, we present the development and assessment of an immobilized quantum dot-transcription factor-nucleic acid complex for progesterone detection as a first step toward such device integration. The sensor, composed of a polyhistidine-tagged transcription factor linked to a quantum dot and a fluorophore-modified cognate DNA, is embedded within a hydrogel as an immobilization matrix.
View Article and Find Full Text PDFImmobilization of biosensors on surfaces is a key step toward development of devices for real-world applications. Here the preparation, characterization, and evaluation of a surface-bound transcription factor-nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore-labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD).
View Article and Find Full Text PDFDespite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles.
View Article and Find Full Text PDFPhosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GAAC/GTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the GATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the A permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome.
View Article and Find Full Text PDFA recent description of an antibody-free assay is significantly extended for small molecule analytes using allosteric transcription factors (aTFs) and Förster resonance energy transfer (FRET). The FRET signal indicates the differential binding of an aTF-DNA pair with a dose-dependent response to its effector molecule, i.e.
View Article and Find Full Text PDFBacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements.
View Article and Find Full Text PDFBackground: Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data.
Results: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E.
Background.: India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3.
View Article and Find Full Text PDFMultidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents.
View Article and Find Full Text PDFBackground: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid.
View Article and Find Full Text PDFLight and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion.
View Article and Find Full Text PDFBackground and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI).
View Article and Find Full Text PDF