Decrement evoked potentials (EPs) (DeEPs) constitute an accepted method to identify physiological ventricular tachycardia (VT) ablation targets without inducing VT. The feasibility of automated software (SW) in the detection of arrhythmogenic VT substrate has been documented. However, multicenter validation of automated SW and workflow has yet to be characterized.
View Article and Find Full Text PDFJACC Clin Electrophysiol
November 2020
Pacing Clin Electrophysiol
November 2002
Acute coronary occlusion causes ST-segment elevation on the body surface ECG and on the epicardial electrogram in the territory supplied by that artery. The occurrence and significance of endocardial ST changes have not been studied. The NOGA electromechanical mapping was performed on eight anesthetized dogs at baseline, immediately after occlusion of the LAD, and again at 5 hours to assess regional changes in the ST segment.
View Article and Find Full Text PDFInt J Cardiovasc Intervent
December 2000
BACKGROUND: The next clinical frontier in the therapeutics of ischemic heart disease may involve the development and delivery of specific molecules and cells into the myocardium. The aim of the present study was to evaluate the efficiency and safety of the MyoStar injection catheter (Biosense-Webster Inc.) that has recently been developed to deliver molecules and cells to the myocardium.
View Article and Find Full Text PDFAssessment of left ventricular (LV) function in the catheterization laboratory is important to optimize treatment decisions and guide catheter-based local therapies. NOGA electromechanical mapping was developed to assess LV contraction during catheterization; however, quantitative analysis of its "local shortening" (LS) algorithm and direct comparison with conventional methods are lacking. We evaluated the accuracy of NOGA-based regional and global function by examining its ability to detect pharmacologically induced changes in contractility compared with echocardiography.
View Article and Find Full Text PDF