Publications by authors named "Gal Dinstag"

Introduction: Immune checkpoint inhibitors (ICI) have improved outcomes in non-small cell lung cancer (NSCLC). Nevertheless, the clinical benefit of ICI as monotherapy or in combination with chemotherapy remains widely varied and existing biomarkers have limited predictive value. We present an analysis of ENLIGHT-DP, a novel transcriptome-based biomarker directly from histopathology slides, in patients with lung adenocarcinoma (LUAD) treated with ICI and platinum-based chemotherapy.

View Article and Find Full Text PDF

Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets.

View Article and Find Full Text PDF

Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin (H&E)-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an approach for predicting response to multiple targeted and immunotherapies from H&E-slides. In difference from existing approaches that aim to predict treatment response directly from the slides, ENLIGHT-DeepPT is an indirect two-step approach consisting of (1) DeepPT, a new deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response based on the DeepPT inferred expression values.

View Article and Find Full Text PDF

Unlabelled: Germline BRCA-associated pancreatic ductal adenocarcinoma (glBRCA PDAC) tumors are susceptible to platinum and PARP inhibition. The clinical outcomes of 125 patients with glBRCA PDAC were stratified based on the spectrum of response to platinum/PARP inhibition: (i) refractory [overall survival (OS) <6 months], (ii) durable response followed by acquired resistance (OS <36 months), and (iii) long-term responders (OS >36 months). Patient-derived xenografts (PDX) were generated from 25 patients with glBRCA PDAC at different clinical time points.

View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is a rare cancer of the liver that most commonly affects children and young adults. There is no clear standard of care for the disease, whose response to treatment seems to be very different from that of hepatocellular carcinoma. We present a case of FLC in a patient in her mid 30s that recurred and persisted despite resection and multiple lines of treatment.

View Article and Find Full Text PDF

Background: Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers.

Methods: We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient's response to a variety of therapies in multiple cancer types without training on previous treatment response data.

View Article and Find Full Text PDF

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome.

View Article and Find Full Text PDF

Motivation: Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, causing abnormal proliferation and tumor development, whereas most somatic mutations have no impact on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary goal in cancer therapy: Knowledge of these genes and the pathways on which they operate can illuminate disease mechanisms and indicate potential therapies and drug targets. Current research focuses mainly on cohort-level driver gene identification but patient-specific driver gene identification remains a challenge.

View Article and Find Full Text PDF

Background: The 2017 guidelines of the American College of Cardiology and the American Heart Association propose substantial changes to hypertension management. The guidelines lower the blood pressure threshold defining hypertension and promote more aggressive treatments. Thus, more individuals are now classified as hypertensive and as a result, medication usage may become more extensive.

View Article and Find Full Text PDF