Strange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRhSi.
View Article and Find Full Text PDFIt is becoming increasingly clear that breakthrough in quantum applications necessitates materials innovation. In high demand are conductors with robust topological states that can be manipulated at will. This is what we demonstrate in the present work.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau's order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime.
View Article and Find Full Text PDFThe formation of two distinct derivative structures of Ti2Ni-type, interstitial Pd3Cu3B and substitutive Pd5Cu5B2, has been elucidated in Pd-Cu-B alloys from analysis of X-ray single crystal and powder diffraction data and supported by SEM. The metal atom arrangement in the new boride Pd3Cu3B (space group Fd3m, W3Fe3C-type structure, a = 1.1136(3) nm) follows the pattern of atom distribution in the CdNi-type structure.
View Article and Find Full Text PDF