Leaf trichomes on the lower leaf surface are common in many plant species, especially those grown under dry and/or low-temperature conditions; however, their adaptive significance remains unclear. Lower-side leaf trichomes can directly decrease gas fluxes through increased gas-diffusion resistance but can indirectly increase gas fluxes through increased leaf temperature owing to increased heat-diffusion resistance. We examined whether the combined direct and indirect effects of trichome resistance increase photosynthetic rates and water-use efficiency (WUE) using Metrosideros polymorpha Gaud.
View Article and Find Full Text PDFEcological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments.
View Article and Find Full Text PDFBackground And Aims: Plants inhabiting arid environments tend to have leaf trichomes, but their adaptive significance remains unclear. Leaf trichomes are known to play a role in plant defence against herbivores, including gall makers. Because gall formation can increase water loss partly through increased surface area, we tested the novel hypothesis that leaf trichomes could contribute to avoiding extra water stress by impeding gall formation, which would have adaptive advantages in arid environments.
View Article and Find Full Text PDF