Publications by authors named "Gaken J"

Head and neck squamous cell carcinomas (HNSCC) are associated with poor morbidity and mortality. Current treatment strategies are highly toxic and do not benefit over 50% of patients. There is therefore a crucial need for predictive and/or prognostic biomarkers to allow treatment stratification for individual patients.

View Article and Find Full Text PDF

MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition.

View Article and Find Full Text PDF

The E3 ubiquitin ligase RNF168 is a ring finger protein that has previously been identified to play an important regulatory role in the repair of double-strand DNA breaks.  In the present study, an unbiased forward genetics functional screen in mouse granulocyte/ macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor-dependent cells, but also in the human breast epithelial cell line MCF-7.

View Article and Find Full Text PDF

We investigated the functional consequences following deletion of a microRNA (miR) termed miR-595 which resides on chromosome 7q and is localised within one of the commonly deleted regions identified for Myelodysplasia (MDS) with monosomy 7 (-7)/isolated loss of 7q (7q-). We identified several targets for miR-595, including a large ribosomal subunit protein RPL27A. RPL27A downregulation induced p53 activation, apoptosis and inhibited proliferation.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate the frequency and clinical significance of CSNK1A1 mutations in patients with myelodysplastic syndrome and associated myeloid neoplasms, focusing on those with isolated del(5q) abnormalities.
  • Out of 250 patients with myeloid neoplasms, 39 had isolated del(5q), and 7 of these (18%) carried missense mutations in CSNK1A1, a gene involved in bone marrow proliferation and ATP catalysis.
  • The presence of CSNK1A1 mutations correlated with poor treatment response and disease progression in patients, similar to TP53 mutations, indicating they contribute to a worse prognosis in del(5q) abnormalities.
View Article and Find Full Text PDF

Bone marrow (BM) genetic abnormalities in myelodysplastic syndrome (MDS) have provided important biological and prognostic information; however, frequent BM sampling in older patients has been associated with significant morbidity. Utilizing single-nucleotide polymorphism array (SNP-A) and targeted gene sequencing (TGS) of 24 frequently mutated genes in MDS, we assessed the concordance of genetic abnormalities in BM and peripheral blood (PB) samples concurrently from 201 MDS patients. SNP-A karyotype in BM was abnormal in 108 (54%) and normal in 93 (46%) patients, with 95% (190/201) having an identical PB karyotype.

View Article and Find Full Text PDF

Apoptin, the VP3 protein from chicken anaemia virus (CAV), induces tumour cell-specific cell death and represents a potential future anti-cancer therapeutic. In tumour but not in normal cells, Apoptin is phosphorylated and translocates to the nucleus, enabling its cytotoxic activity. Recently, the β isozyme of protein kinase C (PKCβ) was shown to phosphorylate Apoptin in multiple myeloma cell lines.

View Article and Find Full Text PDF

Radiotherapy is a major treatment modality for head and neck squamous cell carcinoma (HNSCC). Up to 50% of patients with locally advanced disease relapse after radical treatment and there is therefore a need to develop predictive bomarkers for clinical use that allow the selection of patients who are likely to respond. MicroRNA (miRNA) expression profiling of a panel of HNSCC tumours with and without recurrent disease after surgery and radiotherapy detected miR-196a as one of the highest upregulated miRNAs in the poor prognostic group.

View Article and Find Full Text PDF

The distinction between acquired aplastic anemia (AA) and hypocellular myelodysplastic syndrome (hMDS) is often difficult, especially nonsevere AA. We postulated that somatic mutations are present in a subset of AA, and predict malignant transformation. From our database, we identified 150 AA patients with no morphological evidence of MDS, who had stored bone marrow (BM) and constitutional DNA.

View Article and Find Full Text PDF

Recent studies have shown that more than 80% of bone marrow (BM) samples from patients with myelodysplastic syndrome (MDS) harbor somatic mutations and/or genomic aberrations, which are of diagnostic and prognostic importance. We investigated the potential use of peripheral blood (PB) and serum to identify and monitor BM-derived genetic markers using high-resolution single nucleotide polymorphism array (SNP-A) karyotyping and parallel sequencing of 22 genes frequently mutated in MDS. This pilot study showed a 100% SNP-A karyotype concordance and a 97% mutation concordance between the BM and PB.

View Article and Find Full Text PDF

This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17-89 years) and median follow-up was 45 months [95% confidence interval (CI) 27-62 months]. TP53 mutations occurred in 30 (9.

View Article and Find Full Text PDF

The chicken anaemia virus-derived protein Apoptin/VP3 (CAV-Apoptin) has the important ability to induce tumour-selective apoptosis in a variety of human cancer cells. Recently the first human Gyrovirus (HGyV) was isolated from a human skin swab. It shows significant structural and organisational resemblance to CAV and encodes a homologue of CAV-Apoptin/VP3.

View Article and Find Full Text PDF

Apoptin, a protein derived from the chicken anaemia virus, induces cell death in various cancer cells but shows little or no cytotoxicity in normal cells. The mechanism of apoptin-induced cell death is currently unknown but it appears to induce apoptosis independent of p53 status. Here we show that p73, a p53 family member, is important in apoptin-induced apoptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNA) are a class of small RNA molecules that regulate numerous critical cellular processes and bind to partially complementary sequences resulting in down-regulation of their target genes. Due to the incomplete homology of the miRNA to its target site identification of miRNA target genes is difficult and currently based on computational algorithms predicting large numbers of potential targets for a given miRNA. To enable the identification of biologically relevant miRNA targets, we describe a novel functional assay based on a 3'-UTR-enriched library and a positive/negative selection strategy.

View Article and Find Full Text PDF

The chicken anemia virus-derived protein apoptin induces apoptosis in a variety of human malignant and transformed cells but not in normal cells. However, the mechanisms through which apoptin achieves its selective killing effects are not well understood. We developed a lentiviral vector encoding a green fluorescent protein-apoptin fusion gene (LV-GFP-AP) that can efficiently deliver apoptin into hematopoietic cells.

View Article and Find Full Text PDF

Mutations in the TET2 gene are frequent in myeloid disease, although their biologic and prognostic significance remains unclear. We analyzed 355 patients with myelodysplastic syndromes using "next-generation" sequencing for TET2 aberrations, 91 of whom were also subjected to single-nucleotide polymorphism 6.0 array karyotyping.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) tyrosine kinase is commonly overexpressed in human cancers; however, the cellular mechanisms regulating EGFR expression remain unclear. p53, p63 and p73 are transcription factors regulating many cellular targets involved in controlling the cell cycle and apoptosis. p53 activates EGFR expression, whereas TAp63 represses EGFR transcription.

View Article and Find Full Text PDF

Purpose: Cryptic chromosomal aberrations, such as regions of uniparental disomy (UPD), have been shown to harbor homozygous mutations and are a common feature in myelodysplastic syndrome (MDS). We investigated the sequence integrity of 4q24 candidate tumor suppressor gene TET2 in MDS patients with UPD on chromosome 4.

Patients And Methods: The coding exons of TET2 were analyzed by 454 deep sequencing and Sanger sequencing in nine patients with UPD on 4q.

View Article and Find Full Text PDF

The trans-acting activator of transcription (TAT) protein transduction domain (PTD) mediates the transduction of peptides and proteins into target cells. The TAT-PTD has an important potential as a tool for the delivery of therapeutic agents. The production of TAT fusion proteins in bacteria, however, is problematic because of protein insolubility and the absence of eukaryotic post-translational modification.

View Article and Find Full Text PDF

Low-risk myelodysplastic syndrome (MDS) with normal cytogenetics accounts for approximately 50% of MDS patients. There are no pathognomonic markers in these cases and the diagnosis rests on cytomorphologic abnormalities in bone marrow and/or peripheral blood. Affymetrix high-resolution single-nucleotide polymorphism (SNP) genotyping microarrays allow detection of cytogenetically cryptic genomic aberrations.

View Article and Find Full Text PDF

We have recently shown that E1A protein of human adenovirus downregulates epidermal growth factor receptor (EGFR) expression and induces apoptosis in head and neck (HNSCC) and lung cancer cells independently of their p53 status. E1A has five isoforms of which the major ones E1A12S and E1A13S regulate transcription of cellular genes by binding to transcriptional modulators such as pRB, CtBP, p300 and p400. In this study, we have identified E1A12S isoform to have the highest effect on EGFR suppression and induction of apoptosis in HNSCC cells.

View Article and Find Full Text PDF

Background & Aims: Budd-Chiari Syndrome (BCS) results from obstruction to hepatic venous outflow, with myeloproliferative disorder (MPD) accounting for up to 40% of cases. A number of BCS cases labelled as "idiopathic" do not fulfill the diagnostic criteria for MPD but have features suggestive of a latent form based on hyperplastic bone marrow and erythroid progenitor cell culture; these cases may subsequently develop overt MPD. A clonal mutation in JAK2 tyrosine kinase (JAK2V617F) occurs in a high proportion of patients with MPD and is of use in the characterization of latent MPD in BCS.

View Article and Find Full Text PDF