Alzheimer's disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson's disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC = 0.
View Article and Find Full Text PDFInspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials.
View Article and Find Full Text PDFThe multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD.
View Article and Find Full Text PDFOur present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds and have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine.
View Article and Find Full Text PDFIndole-3-carbinol (I3C) is reported to have hepatic and neuroprotective properties. However, the I3C role in the protection of the liver and brain in the pathological condition of hepatic encephalopathy has not been investigated. Therefore, in the present study, we have assessed the hepatic and neuroprotective roles of I3C against thioacetamide (TAA)- induced hepatic encephalopathy in Wistar rats.
View Article and Find Full Text PDFA series of some novel compounds () were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds and have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes Compounds and have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities.
View Article and Find Full Text PDFVasicine is a pyrroloquinazoline alkaloid, which has been isolated from the plant Adhatoda vasica. Naturally inspired semi-synthetic transformations were prepared using vasicine as a synthetic precursor to overcome Alzheimer's disease (AD). These semi-synthetic analogs exhibited stable interactions and were well resided at AChE and BChE active sites in in-silico studies.
View Article and Find Full Text PDF