Publications by authors named "Gajendiran Mani"

Four new heteroleptic silver(I) complexes with the general formula [Ag(L)(nap)] (-), where L =  2-(1-(4-substitutedphenyl)ethylidene)hydrazinecarbothioamide and nap = naproxen, have been synthesized and characterized. The geometric parameters determined from density functional theory and UV-Vis studies indicate distorted tetrahedral geometry around silver(I) ion. Fourier transform infrared (FT IR) spectra evidenced asymmetric bidentate coordination mode of carboxyl oxygen atoms of naproxen with silver(I) ion.

View Article and Find Full Text PDF

Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments.

View Article and Find Full Text PDF

Poly(ethylene arginyl aspartate diglyceride) (PEAD) polycation is widely used to prepare coacervate particles by electrostatic complexation with an anionic heparin (HEP) in aqueous environments, for controlled release of therapeutic proteins. However, coacervate complexes aggregate randomly due to particle-particle charge interactions. Herein, a new term "coacersome" is introduced to represent a stable polyplex formed by complexation of mPEGylated PEAD and HEP.

View Article and Find Full Text PDF

Eight heteroleptic nickel(II) and copper(II) complexes of the type [M(L)(nap)] (-), where L = 2-(1-(4-substitutedphenyl)ethylidene)hydrazinecarbothioamide, nap = naproxen, and M = Ni(II) or Cu(II), have been synthesized and characterized. UV-vis and EPR spectral studies showed distorted octahedral geometry around metal(II) ions. The cyclic voltammogram of complexes - displayed an irreversible one-electron transfer process in the cathodic region ( = -0.

View Article and Find Full Text PDF

Background: Surface functionalization of gold nanoparticles (AuNPs) has emerged as a promising field of research with enormous biomedical applications. The folate (FA)-attached polymer-gold nanoconjugates play vital role in targeting the cancer cells.

Methods: AuNPs were synthesized by using di- or tri-carboxylate-polyethylene glycol (PEG) polymers, including citrate-PEG (CPEG), malate-PEG (MAP), and tartrate-PEG (TAP), as a reducing and stabilizing agent.

View Article and Find Full Text PDF

Direct administration of bone morphogenetic protein-2 (BMP-2) for bone regeneration could cause various clinical side effects such as osteoclast activation, inflammation, adipogenesis, and bone cyst formation. In this study, thiolated gelatin/poly(ethylene glycol) diacrylate (PEGDA) interpenetrating (IPN) composite hydrogels were developed for guided skull bone regeneration. To promote bone regeneration, either polycation-based coacervates (Coa) or gelatin microparticles (GMPs) were incorporated within IPN gels as BMP-2 carriers.

View Article and Find Full Text PDF

Development of folate (FA)-functionalized gold nanoparticles (AuNPs) has greatly increased in recent years due to their potential in cancer treatment. As surface functionalization of polymer-free AuNPs with thiol groups could result in agglomeration and precipitation, AuNPs should be stabilized with an efficient polymer. In this study, citric acid-PEG branched polymer (CPEG) acted as a reducing as well as stabilizing agent in the synthesis of AuNPs.

View Article and Find Full Text PDF

An aliphatic citric acid-PEG hyper-branched polymer (CPHP) with a π-bond on the polymer backbone was synthesized by a single- step melt reaction in which the polymerization and π-bond formation occur simultaneously. The chemical structure of CPHP was confirmed by FTIR, H-NMR, C-NMR and MALDI-TOF mass spectral analyses. Aggregates are generally found to disperse in any solvent but the CPHP aggregates were soluble in water due to their hybrid nature.

View Article and Find Full Text PDF

This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone.

View Article and Find Full Text PDF
Article Synopsis
  • The study is about making a natural drug carrier using a seaweed product called κ-Carrageenan (κ-Car) to help deliver medicine, particularly curcumin from turmeric, to fight lung cancer cells.
  • κ-Car is safe, eco-friendly, and can break down in the body, making it a good choice for drug delivery.
  • The research showed that the drug carrier worked well, releasing curcumin effectively in acidic conditions (like those found in tumors) and killing cancer cells better than curcumin alone by causing them to die in a process called apoptosis.
View Article and Find Full Text PDF

A series of succinate linearly linked PLGA-PEG-SA-PEG-PLGA multiblock copolymers were synthesized using direct melt polycondensation and characterized using inherent viscosity, gel permeation chromatography (GPC), FTIR and H-NMR spectroscopy techniques. Gold nanoparticles (AuNPs) were synthesized using an as-synthesized citrate-PEG (CPEG) hybrid dendron, which acts as a reducing agent as well as a stabilizing agent. The CPEG capped AuNPs were characterized using UV-visible spectroscopy and TEM analysis.

View Article and Find Full Text PDF

A series of biodegradable low molecular weight PLGA-PEG-PLGA tri-block copolymers have been synthesized in powder form. The anti-tuberculosis drug Isoniazid (INH) loaded polymeric core-shell nanoparticles (CSNPs) have been prepared by sonication followed by water-in-oil-in-water (w/o/w) double emulsification technique. The nanoparticles (NPs) have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and X-ray photo electron spectroscopic (XPS) techniques.

View Article and Find Full Text PDF