The design of biomimetic materials through molecular self-assembly is a growing area of modern nanotechnology. With problems of protein folding, self-assembly, and sequence-structure relationships as essential in nanotechnology as in biology, the effect of the nucleation of β-hairpin formation by proline on the folding process has been investigated in model studies. Previously such studies were limited to investigations of the influence of proline on the formation of turns in short peptide sequences.
View Article and Find Full Text PDFThe discoveries that non-native proteins have a role in amyloidosis and that multiple protein misfolding diseases can occur concurrently suggest that cross-seeding of amyloidogenic proteins may be central to misfolding. To study this process, a synthetic chimeric amyloidogenic protein (YEHK21-YE8) composed of two components, one that readily folds to form fibrils (YEHK21) and one that does not (YE8), was designed. Secondary structural conformational changes during YEHK21-YE8 aggregation demonstrate that, under the appropriate conditions, YEHK21 is able to induce fibril formation of YE8.
View Article and Find Full Text PDFUnderstanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy.
View Article and Find Full Text PDF