Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: -signaling and . IL-6 involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA).
View Article and Find Full Text PDFMethods Mol Biol
March 2022
This introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
View Article and Find Full Text PDFAbsence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense mutations in the gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using splice-switching oligonucleotides (SSOs) restores the reading frame of pre-mRNA by generating internally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional SSOs, it is essential to perform accelerated and reliable screening-based assessment of novel oligonucleotides and drug delivery technologies, such as cell-penetrating peptides, before their pharmacokinetic and toxicity evaluation.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) are a widely used form of gene therapy, which is translatable to multiple disorders. A major obstacle for ASO efficacy is its bioavailability for in vivo and in vitro studies. To overcome this challenge we use cell-penetrating peptides (CPPs) for systemic delivery of ASOs.
View Article and Find Full Text PDFThe review starts with a historical perspective of the achievements of the Gait group in synthesis of oligonucleotides (ONs) and their peptide conjugates toward the award of the 2017 Oligonucleotide Therapeutic Society Lifetime Achievement Award. This acts as a prelude to the rewarding collaborative studies in the Gait and Wood research groups aimed toward the enhanced delivery of charge neutral ON drugs and the development of a series of Arg-rich cell-penetrating peptides called Pip (peptide nucleic acid/phosphorodiamidate morpholino oligonucleotide [PNA/PMO] internalization peptides) as conjugates of such ONs. In this review we concentrate on these developments toward the treatment of the neuromuscular diseases Duchenne muscular dystrophy and spinal muscular atrophy toward a platform technology for the enhancement of cellular and in vivo delivery suitable for widespread use as neuromuscular and neurodegenerative ON drugs.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype.
View Article and Find Full Text PDFCardiac failure is a major cause of mortality in patients with Duchenne muscular dystrophy (DMD). Antisense-mediated exon skipping has the ability to correct out-of-frame mutations in DMD to produce truncated but functional dystrophin. Traditional antisense approaches have however been limited by their poor uptake into cardiac muscle.
View Article and Find Full Text PDFAntisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2'--methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders.
View Article and Find Full Text PDFThere is an increasing interest in targeting molecules to the mitochondrial matrix. Many proteins are naturally imported through the translocase complexes found in the outer and inner mitochondrial membranes. One possible means for importing molecules is therefore to use a mitochondrial pre-protein as a vector and assess what forms of molecules can be attached to the pre-protein as cargo.
View Article and Find Full Text PDFSplice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood-brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion.
View Article and Find Full Text PDFThe development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration.
View Article and Find Full Text PDFMitochondria are central to health and disease, hence there is considerable interest in developing mitochondria-targeted therapies that require the delivery of peptides or nucleic acid oligomers. However, progress has been impeded by the lack of a measure of mitochondrial import of these molecules. Here, we address this need by quantitatively detecting molecules within the mitochondrial matrix.
View Article and Find Full Text PDFThere is currently an urgent need for biomarkers that can be used to monitor the efficacy of experimental therapies for Duchenne Muscular Dystrophy (DMD) in clinical trials. Identification of novel protein biomarkers has been limited due to the massive complexity of the serum proteome and the presence of a small number of very highly abundant proteins. Here we have utilised an aptamer-based proteomics approach to profile 1,129 proteins in the serum of wild-type and mdx (dystrophin deficient) mice.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD.
View Article and Find Full Text PDFCell-penetrating peptide (CPP)-mediated delivery of phosphorodiamidate morpholino oligomers (PMO) results in efficient exon skipping and has shown great promise as a potential therapy for Duchenne muscular dystrophy (DMD). However, large differences in efficiency have been observed between CPPs and in delivery to different tissues. Cellular trafficking has appeared to be an important determinant of activity.
View Article and Find Full Text PDFAntisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by absence of the integral structural protein, dystrophin, which renders muscle fibres susceptible to injury and degeneration. This ultimately results in cardiorespiratory dysfunction, which is the predominant cause of death in DMD patients, and highlights the importance of therapeutic targeting of the cardiorespiratory system. While there is some evidence to suggest that restoring dystrophin in the diaphragm improves both respiratory and cardiac function, the role of the diaphragm is not well understood.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD).
View Article and Find Full Text PDFThe fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis.
View Article and Find Full Text PDFSplice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping.
View Article and Find Full Text PDF