Publications by authors named "Gaissmaier L"

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition.

View Article and Find Full Text PDF

Introduction: PD-(L)1 inhibitors (IO) have improved the prognosis of non-small-cell lung cancer (NSCLC), but more reliable predictors of efficacy and immune-related adverse events (irAE) are urgently needed. Cytokines are important effector molecules of the immune system, whose potential clinical utility as biomarkers remains unclear.

Methods: Serum samples from patients with advanced NSCLC receiving IO either alone in the first (1L, n=46) and subsequent lines (n=50), or combined with chemotherapy (ICT, n=108) were analyzed along with age-matched healthy controls (n=15) at baseline, after 1 and 4 therapy cycles, and at disease progression (PD).

View Article and Find Full Text PDF

Background: The advanced lung cancer inflammation index [ALI: body mass index × serum albumin/neutrophil-to-lymphocyte ratio (NLR)] reflects systemic host inflammation, and is easily reproducible. We hypothesized that ALI could assist guidance of non-small-cell lung cancer (NSCLC) treatment with immune checkpoint inhibitors (ICIs).

Patients And Methods: This retrospective study included 672 stage IV NSCLC patients treated with programmed death-ligand 1 (PD-L1) inhibitors alone or in combination with chemotherapy in 25 centers in Greece and Germany, and a control cohort of 444 stage IV NSCLC patients treated with platinum-based chemotherapy without subsequent targeted or immunotherapy drugs.

View Article and Find Full Text PDF

Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes.

View Article and Find Full Text PDF

Oligoprogression (OPD) of non-small-cell lung cancer (NSCLC) occurs in approximately half of patients under targeted compounds (TKI) and facilitates use of regional therapies that can prolong survival. In order to characterize OPD in immunotherapy (IO)-treated NSCLC, we analyzed the failure pattern under PD-1/PD-L1 inhibitors ( = 297) or chemoimmunotherapy ( = 75). Under IO monotherapy, OPD was more frequent (20% vs.

View Article and Find Full Text PDF