Publications by authors named "Gail W Thurman"

Peroxiredoxin 6-phospholipase A(2) (Prdx6-PLA(2) ) is a bi-functional enzyme with peroxi-redoxin (Prdx) and phospholipase A(2) (PLA(2) ) activities. To investigate its impact on phagocyte NADPH oxidase (phox) activity in a neutrophil model, the protein was knocked down in PLB-985 cells using stable expression of a small hairpin RNA (shRNA) and phox activity was monitored after cell differentiation. The knockdown cells had reduced oxidase activity in response to stimulation with the formylated peptide fMLF, but the response to the phorbol ester PMA was unchanged.

View Article and Find Full Text PDF

Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system.

View Article and Find Full Text PDF

Introduction: Newborn infants are prone to develop life-threatening pyogenic infections. Alterations in the function of neonatal phagocytes, including the activity of the neutrophil NADPH oxidase, have been suggested as one cause of increased susceptibility to such infections.

Methods: In the present study, comprehensive analysis of NADPH oxidase enzyme system was performed in cord blood neutrophils from vaginally and cesarean section (CS) delivered, healthy, full-term infants.

View Article and Find Full Text PDF

Chemoattractant priming and activation of PMNs results in changes in cytosolic Ca2+ concentration, tyrosine kinase activity, and gene expression. We hypothesize that the initial signaling for the activation of a 105kDa protein (Rel-1) requires Ca2+-dependent tyrosine phosphorylation. A rapid and time-dependent tyrosine phosphorylation of Rel-1 occurred following formyl-Met-Leu-Phe (fMLP) stimulation of human PMNs at concentrations that primed or activated the NADPH oxidase (10(-9) to 10(-6)M), becoming maximal after 30s.

View Article and Find Full Text PDF